Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuninc Structured version   Visualization version   GIF version

Theorem iuninc 31532
Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypotheses
Ref Expression
iuninc.1 (𝜑𝐹 Fn ℕ)
iuninc.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iuninc ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Distinct variable groups:   𝑖,𝑛   𝑛,𝐹   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐹(𝑖)

Proof of Theorem iuninc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7369 . . . . . 6 (𝑗 = 1 → (1...𝑗) = (1...1))
21iuneq1d 4985 . . . . 5 (𝑗 = 1 → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3 fveq2 6846 . . . . 5 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
42, 3eqeq12d 2749 . . . 4 (𝑗 = 1 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)))
54imbi2d 341 . . 3 (𝑗 = 1 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))))
6 oveq2 7369 . . . . . 6 (𝑗 = 𝑘 → (1...𝑗) = (1...𝑘))
76iuneq1d 4985 . . . . 5 (𝑗 = 𝑘 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
8 fveq2 6846 . . . . 5 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
97, 8eqeq12d 2749 . . . 4 (𝑗 = 𝑘 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)))
109imbi2d 341 . . 3 (𝑗 = 𝑘 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))))
11 oveq2 7369 . . . . . 6 (𝑗 = (𝑘 + 1) → (1...𝑗) = (1...(𝑘 + 1)))
1211iuneq1d 4985 . . . . 5 (𝑗 = (𝑘 + 1) → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
13 fveq2 6846 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
1412, 13eqeq12d 2749 . . . 4 (𝑗 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1))))
1514imbi2d 341 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
16 oveq2 7369 . . . . . 6 (𝑗 = 𝑖 → (1...𝑗) = (1...𝑖))
1716iuneq1d 4985 . . . . 5 (𝑗 = 𝑖 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑖)(𝐹𝑛))
18 fveq2 6846 . . . . 5 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
1917, 18eqeq12d 2749 . . . 4 (𝑗 = 𝑖 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
2019imbi2d 341 . . 3 (𝑗 = 𝑖 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))))
21 1z 12541 . . . . . 6 1 ∈ ℤ
22 fzsn 13492 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
23 iuneq1 4974 . . . . . 6 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
2421, 22, 23mp2b 10 . . . . 5 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
25 1ex 11159 . . . . . 6 1 ∈ V
26 fveq2 6846 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2725, 26iunxsn 5055 . . . . 5 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
2824, 27eqtri 2761 . . . 4 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
2928a1i 11 . . 3 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))
30 simpll 766 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑘 ∈ ℕ)
31 elnnuz 12815 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
32 fzsuc 13497 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3331, 32sylbi 216 . . . . . . . . 9 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3433iuneq1d 4985 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
35 iunxun 5058 . . . . . . . . 9 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
36 ovex 7394 . . . . . . . . . . 11 (𝑘 + 1) ∈ V
37 fveq2 6846 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
3836, 37iunxsn 5055 . . . . . . . . . 10 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
3938uneq2i 4124 . . . . . . . . 9 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4035, 39eqtri 2761 . . . . . . . 8 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4134, 40eqtrdi 2789 . . . . . . 7 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
4230, 41syl 17 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
43 simpr 486 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))
4443uneq1d 4126 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))))
45 simplr 768 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝜑)
46 iuninc.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
4746sbt 2070 . . . . . . . . 9 [𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
48 sbim 2300 . . . . . . . . . 10 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
49 sban 2084 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ))
50 sbv 2092 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝜑𝜑)
51 clelsb1 2861 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)
5250, 51anbi12i 628 . . . . . . . . . . . 12 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ))
5349, 52bitr2i 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) ↔ [𝑘 / 𝑛](𝜑𝑛 ∈ ℕ))
54 sbsbc 3747 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
55 sbcssg 4485 . . . . . . . . . . . . 13 (𝑘 ∈ V → ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1))))
5655elv 3453 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)))
57 csbfv 6896 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹𝑛) = (𝐹𝑘)
58 csbfv2g 6895 . . . . . . . . . . . . . . 15 (𝑘 ∈ V → 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1)))
5958elv 3453 . . . . . . . . . . . . . 14 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1))
60 csbov1g 7406 . . . . . . . . . . . . . . . 16 (𝑘 ∈ V → 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1))
6160elv 3453 . . . . . . . . . . . . . . 15 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1)
6261fveq2i 6849 . . . . . . . . . . . . . 14 (𝐹𝑘 / 𝑛(𝑛 + 1)) = (𝐹‘(𝑘 / 𝑛𝑛 + 1))
63 vex 3451 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
6463csbvargi 4396 . . . . . . . . . . . . . . . 16 𝑘 / 𝑛𝑛 = 𝑘
6564oveq1i 7371 . . . . . . . . . . . . . . 15 (𝑘 / 𝑛𝑛 + 1) = (𝑘 + 1)
6665fveq2i 6849 . . . . . . . . . . . . . 14 (𝐹‘(𝑘 / 𝑛𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6759, 62, 663eqtri 2765 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6857, 67sseq12i 3978 . . . . . . . . . . . 12 (𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
6954, 56, 683bitrri 298 . . . . . . . . . . 11 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
7053, 69imbi12i 351 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
7148, 70bitr4i 278 . . . . . . . . 9 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
7247, 71mpbi 229 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
73 ssequn1 4144 . . . . . . . 8 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7472, 73sylib 217 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7545, 30, 74syl2anc 585 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7642, 44, 753eqtrd 2777 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))
7776exp31 421 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
7877a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
795, 10, 15, 20, 29, 78nnind 12179 . 2 (𝑖 ∈ ℕ → (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
8079impcom 409 1 ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  [wsb 2068  wcel 2107  Vcvv 3447  [wsbc 3743  csb 3859  cun 3912  wss 3914  {csn 4590   ciun 4958   Fn wfn 6495  cfv 6500  (class class class)co 7361  1c1 11060   + caddc 11062  cn 12161  cz 12507  cuz 12771  ...cfz 13433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434
This theorem is referenced by:  meascnbl  32882
  Copyright terms: Public domain W3C validator