Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuninc Structured version   Visualization version   GIF version

Theorem iuninc 30306
Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypotheses
Ref Expression
iuninc.1 (𝜑𝐹 Fn ℕ)
iuninc.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iuninc ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Distinct variable groups:   𝑖,𝑛   𝑛,𝐹   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐹(𝑖)

Proof of Theorem iuninc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7158 . . . . . 6 (𝑗 = 1 → (1...𝑗) = (1...1))
21iuneq1d 4938 . . . . 5 (𝑗 = 1 → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3 fveq2 6664 . . . . 5 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
42, 3eqeq12d 2837 . . . 4 (𝑗 = 1 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)))
54imbi2d 343 . . 3 (𝑗 = 1 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))))
6 oveq2 7158 . . . . . 6 (𝑗 = 𝑘 → (1...𝑗) = (1...𝑘))
76iuneq1d 4938 . . . . 5 (𝑗 = 𝑘 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
8 fveq2 6664 . . . . 5 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
97, 8eqeq12d 2837 . . . 4 (𝑗 = 𝑘 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)))
109imbi2d 343 . . 3 (𝑗 = 𝑘 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))))
11 oveq2 7158 . . . . . 6 (𝑗 = (𝑘 + 1) → (1...𝑗) = (1...(𝑘 + 1)))
1211iuneq1d 4938 . . . . 5 (𝑗 = (𝑘 + 1) → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
13 fveq2 6664 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
1412, 13eqeq12d 2837 . . . 4 (𝑗 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1))))
1514imbi2d 343 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
16 oveq2 7158 . . . . . 6 (𝑗 = 𝑖 → (1...𝑗) = (1...𝑖))
1716iuneq1d 4938 . . . . 5 (𝑗 = 𝑖 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑖)(𝐹𝑛))
18 fveq2 6664 . . . . 5 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
1917, 18eqeq12d 2837 . . . 4 (𝑗 = 𝑖 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
2019imbi2d 343 . . 3 (𝑗 = 𝑖 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))))
21 1z 12006 . . . . . 6 1 ∈ ℤ
22 fzsn 12943 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
23 iuneq1 4927 . . . . . 6 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
2421, 22, 23mp2b 10 . . . . 5 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
25 1ex 10631 . . . . . 6 1 ∈ V
26 fveq2 6664 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2725, 26iunxsn 5005 . . . . 5 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
2824, 27eqtri 2844 . . . 4 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
2928a1i 11 . . 3 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))
30 simpll 765 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑘 ∈ ℕ)
31 elnnuz 12276 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
32 fzsuc 12948 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3331, 32sylbi 219 . . . . . . . . 9 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3433iuneq1d 4938 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
35 iunxun 5008 . . . . . . . . 9 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
36 ovex 7183 . . . . . . . . . . 11 (𝑘 + 1) ∈ V
37 fveq2 6664 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
3836, 37iunxsn 5005 . . . . . . . . . 10 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
3938uneq2i 4135 . . . . . . . . 9 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4035, 39eqtri 2844 . . . . . . . 8 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4134, 40syl6eq 2872 . . . . . . 7 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
4230, 41syl 17 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
43 simpr 487 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))
4443uneq1d 4137 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))))
45 simplr 767 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝜑)
46 iuninc.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
4746sbt 2067 . . . . . . . . 9 [𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
48 sbim 2307 . . . . . . . . . 10 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
49 sban 2082 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ))
50 sbv 2094 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝜑𝜑)
51 clelsb3 2940 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)
5250, 51anbi12i 628 . . . . . . . . . . . 12 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ))
5349, 52bitr2i 278 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) ↔ [𝑘 / 𝑛](𝜑𝑛 ∈ ℕ))
54 sbsbc 3775 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
55 sbcssg 4462 . . . . . . . . . . . . 13 (𝑘 ∈ V → ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1))))
5655elv 3499 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)))
57 csbfv 6709 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹𝑛) = (𝐹𝑘)
58 csbfv2g 6708 . . . . . . . . . . . . . . 15 (𝑘 ∈ V → 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1)))
5958elv 3499 . . . . . . . . . . . . . 14 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1))
60 csbov1g 7195 . . . . . . . . . . . . . . . 16 (𝑘 ∈ V → 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1))
6160elv 3499 . . . . . . . . . . . . . . 15 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1)
6261fveq2i 6667 . . . . . . . . . . . . . 14 (𝐹𝑘 / 𝑛(𝑛 + 1)) = (𝐹‘(𝑘 / 𝑛𝑛 + 1))
63 vex 3497 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
6463csbvargi 4383 . . . . . . . . . . . . . . . 16 𝑘 / 𝑛𝑛 = 𝑘
6564oveq1i 7160 . . . . . . . . . . . . . . 15 (𝑘 / 𝑛𝑛 + 1) = (𝑘 + 1)
6665fveq2i 6667 . . . . . . . . . . . . . 14 (𝐹‘(𝑘 / 𝑛𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6759, 62, 663eqtri 2848 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6857, 67sseq12i 3996 . . . . . . . . . . . 12 (𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
6954, 56, 683bitrri 300 . . . . . . . . . . 11 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
7053, 69imbi12i 353 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
7148, 70bitr4i 280 . . . . . . . . 9 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
7247, 71mpbi 232 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
73 ssequn1 4155 . . . . . . . 8 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7472, 73sylib 220 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7545, 30, 74syl2anc 586 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7642, 44, 753eqtrd 2860 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))
7776exp31 422 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
7877a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
795, 10, 15, 20, 29, 78nnind 11650 . 2 (𝑖 ∈ ℕ → (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
8079impcom 410 1 ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  [wsb 2065  wcel 2110  Vcvv 3494  [wsbc 3771  csb 3882  cun 3933  wss 3935  {csn 4560   ciun 4911   Fn wfn 6344  cfv 6349  (class class class)co 7150  1c1 10532   + caddc 10534  cn 11632  cz 11975  cuz 12237  ...cfz 12886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887
This theorem is referenced by:  meascnbl  31473
  Copyright terms: Public domain W3C validator