Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuninc Structured version   Visualization version   GIF version

Theorem iuninc 30801
Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypotheses
Ref Expression
iuninc.1 (𝜑𝐹 Fn ℕ)
iuninc.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iuninc ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Distinct variable groups:   𝑖,𝑛   𝑛,𝐹   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐹(𝑖)

Proof of Theorem iuninc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . . 6 (𝑗 = 1 → (1...𝑗) = (1...1))
21iuneq1d 4948 . . . . 5 (𝑗 = 1 → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3 fveq2 6756 . . . . 5 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
42, 3eqeq12d 2754 . . . 4 (𝑗 = 1 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)))
54imbi2d 340 . . 3 (𝑗 = 1 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))))
6 oveq2 7263 . . . . . 6 (𝑗 = 𝑘 → (1...𝑗) = (1...𝑘))
76iuneq1d 4948 . . . . 5 (𝑗 = 𝑘 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
8 fveq2 6756 . . . . 5 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
97, 8eqeq12d 2754 . . . 4 (𝑗 = 𝑘 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)))
109imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))))
11 oveq2 7263 . . . . . 6 (𝑗 = (𝑘 + 1) → (1...𝑗) = (1...(𝑘 + 1)))
1211iuneq1d 4948 . . . . 5 (𝑗 = (𝑘 + 1) → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
13 fveq2 6756 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
1412, 13eqeq12d 2754 . . . 4 (𝑗 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1))))
1514imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
16 oveq2 7263 . . . . . 6 (𝑗 = 𝑖 → (1...𝑗) = (1...𝑖))
1716iuneq1d 4948 . . . . 5 (𝑗 = 𝑖 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑖)(𝐹𝑛))
18 fveq2 6756 . . . . 5 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
1917, 18eqeq12d 2754 . . . 4 (𝑗 = 𝑖 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
2019imbi2d 340 . . 3 (𝑗 = 𝑖 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))))
21 1z 12280 . . . . . 6 1 ∈ ℤ
22 fzsn 13227 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
23 iuneq1 4937 . . . . . 6 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
2421, 22, 23mp2b 10 . . . . 5 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
25 1ex 10902 . . . . . 6 1 ∈ V
26 fveq2 6756 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2725, 26iunxsn 5016 . . . . 5 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
2824, 27eqtri 2766 . . . 4 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
2928a1i 11 . . 3 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))
30 simpll 763 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑘 ∈ ℕ)
31 elnnuz 12551 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
32 fzsuc 13232 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3331, 32sylbi 216 . . . . . . . . 9 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3433iuneq1d 4948 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
35 iunxun 5019 . . . . . . . . 9 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
36 ovex 7288 . . . . . . . . . . 11 (𝑘 + 1) ∈ V
37 fveq2 6756 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
3836, 37iunxsn 5016 . . . . . . . . . 10 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
3938uneq2i 4090 . . . . . . . . 9 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4035, 39eqtri 2766 . . . . . . . 8 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4134, 40eqtrdi 2795 . . . . . . 7 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
4230, 41syl 17 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
43 simpr 484 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))
4443uneq1d 4092 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))))
45 simplr 765 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝜑)
46 iuninc.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
4746sbt 2070 . . . . . . . . 9 [𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
48 sbim 2303 . . . . . . . . . 10 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
49 sban 2084 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ))
50 sbv 2092 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝜑𝜑)
51 clelsb1 2866 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)
5250, 51anbi12i 626 . . . . . . . . . . . 12 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ))
5349, 52bitr2i 275 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) ↔ [𝑘 / 𝑛](𝜑𝑛 ∈ ℕ))
54 sbsbc 3715 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
55 sbcssg 4451 . . . . . . . . . . . . 13 (𝑘 ∈ V → ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1))))
5655elv 3428 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)))
57 csbfv 6801 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹𝑛) = (𝐹𝑘)
58 csbfv2g 6800 . . . . . . . . . . . . . . 15 (𝑘 ∈ V → 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1)))
5958elv 3428 . . . . . . . . . . . . . 14 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1))
60 csbov1g 7300 . . . . . . . . . . . . . . . 16 (𝑘 ∈ V → 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1))
6160elv 3428 . . . . . . . . . . . . . . 15 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1)
6261fveq2i 6759 . . . . . . . . . . . . . 14 (𝐹𝑘 / 𝑛(𝑛 + 1)) = (𝐹‘(𝑘 / 𝑛𝑛 + 1))
63 vex 3426 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
6463csbvargi 4363 . . . . . . . . . . . . . . . 16 𝑘 / 𝑛𝑛 = 𝑘
6564oveq1i 7265 . . . . . . . . . . . . . . 15 (𝑘 / 𝑛𝑛 + 1) = (𝑘 + 1)
6665fveq2i 6759 . . . . . . . . . . . . . 14 (𝐹‘(𝑘 / 𝑛𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6759, 62, 663eqtri 2770 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6857, 67sseq12i 3947 . . . . . . . . . . . 12 (𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
6954, 56, 683bitrri 297 . . . . . . . . . . 11 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
7053, 69imbi12i 350 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
7148, 70bitr4i 277 . . . . . . . . 9 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
7247, 71mpbi 229 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
73 ssequn1 4110 . . . . . . . 8 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7472, 73sylib 217 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7545, 30, 74syl2anc 583 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7642, 44, 753eqtrd 2782 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))
7776exp31 419 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
7877a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
795, 10, 15, 20, 29, 78nnind 11921 . 2 (𝑖 ∈ ℕ → (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
8079impcom 407 1 ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  [wsb 2068  wcel 2108  Vcvv 3422  [wsbc 3711  csb 3828  cun 3881  wss 3883  {csn 4558   ciun 4921   Fn wfn 6413  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805  cn 11903  cz 12249  cuz 12511  ...cfz 13168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169
This theorem is referenced by:  meascnbl  32087
  Copyright terms: Public domain W3C validator