Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuninc Structured version   Visualization version   GIF version

Theorem iuninc 32573
Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017.)
Hypotheses
Ref Expression
iuninc.1 (𝜑𝐹 Fn ℕ)
iuninc.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iuninc ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Distinct variable groups:   𝑖,𝑛   𝑛,𝐹   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑖)   𝐹(𝑖)

Proof of Theorem iuninc
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7439 . . . . . 6 (𝑗 = 1 → (1...𝑗) = (1...1))
21iuneq1d 5019 . . . . 5 (𝑗 = 1 → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...1)(𝐹𝑛))
3 fveq2 6906 . . . . 5 (𝑗 = 1 → (𝐹𝑗) = (𝐹‘1))
42, 3eqeq12d 2753 . . . 4 (𝑗 = 1 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)))
54imbi2d 340 . . 3 (𝑗 = 1 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))))
6 oveq2 7439 . . . . . 6 (𝑗 = 𝑘 → (1...𝑗) = (1...𝑘))
76iuneq1d 5019 . . . . 5 (𝑗 = 𝑘 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑘)(𝐹𝑛))
8 fveq2 6906 . . . . 5 (𝑗 = 𝑘 → (𝐹𝑗) = (𝐹𝑘))
97, 8eqeq12d 2753 . . . 4 (𝑗 = 𝑘 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)))
109imbi2d 340 . . 3 (𝑗 = 𝑘 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))))
11 oveq2 7439 . . . . . 6 (𝑗 = (𝑘 + 1) → (1...𝑗) = (1...(𝑘 + 1)))
1211iuneq1d 5019 . . . . 5 (𝑗 = (𝑘 + 1) → 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛))
13 fveq2 6906 . . . . 5 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
1412, 13eqeq12d 2753 . . . 4 (𝑗 = (𝑘 + 1) → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1))))
1514imbi2d 340 . . 3 (𝑗 = (𝑘 + 1) → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
16 oveq2 7439 . . . . . 6 (𝑗 = 𝑖 → (1...𝑗) = (1...𝑖))
1716iuneq1d 5019 . . . . 5 (𝑗 = 𝑖 𝑛 ∈ (1...𝑗)(𝐹𝑛) = 𝑛 ∈ (1...𝑖)(𝐹𝑛))
18 fveq2 6906 . . . . 5 (𝑗 = 𝑖 → (𝐹𝑗) = (𝐹𝑖))
1917, 18eqeq12d 2753 . . . 4 (𝑗 = 𝑖 → ( 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗) ↔ 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
2019imbi2d 340 . . 3 (𝑗 = 𝑖 → ((𝜑 𝑛 ∈ (1...𝑗)(𝐹𝑛) = (𝐹𝑗)) ↔ (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))))
21 1z 12647 . . . . . 6 1 ∈ ℤ
22 fzsn 13606 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
23 iuneq1 5008 . . . . . 6 ((1...1) = {1} → 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛))
2421, 22, 23mp2b 10 . . . . 5 𝑛 ∈ (1...1)(𝐹𝑛) = 𝑛 ∈ {1} (𝐹𝑛)
25 1ex 11257 . . . . . 6 1 ∈ V
26 fveq2 6906 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
2725, 26iunxsn 5091 . . . . 5 𝑛 ∈ {1} (𝐹𝑛) = (𝐹‘1)
2824, 27eqtri 2765 . . . 4 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1)
2928a1i 11 . . 3 (𝜑 𝑛 ∈ (1...1)(𝐹𝑛) = (𝐹‘1))
30 simpll 767 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑘 ∈ ℕ)
31 elnnuz 12922 . . . . . . . . . 10 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
32 fzsuc 13611 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘1) → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3331, 32sylbi 217 . . . . . . . . 9 (𝑘 ∈ ℕ → (1...(𝑘 + 1)) = ((1...𝑘) ∪ {(𝑘 + 1)}))
3433iuneq1d 5019 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛))
35 iunxun 5094 . . . . . . . . 9 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛))
36 ovex 7464 . . . . . . . . . . 11 (𝑘 + 1) ∈ V
37 fveq2 6906 . . . . . . . . . . 11 (𝑛 = (𝑘 + 1) → (𝐹𝑛) = (𝐹‘(𝑘 + 1)))
3836, 37iunxsn 5091 . . . . . . . . . 10 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛) = (𝐹‘(𝑘 + 1))
3938uneq2i 4165 . . . . . . . . 9 ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ 𝑛 ∈ {(𝑘 + 1)} (𝐹𝑛)) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4035, 39eqtri 2765 . . . . . . . 8 𝑛 ∈ ((1...𝑘) ∪ {(𝑘 + 1)})(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1)))
4134, 40eqtrdi 2793 . . . . . . 7 (𝑘 ∈ ℕ → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
4230, 41syl 17 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))))
43 simpr 484 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘))
4443uneq1d 4167 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) ∪ (𝐹‘(𝑘 + 1))) = ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))))
45 simplr 769 . . . . . . 7 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝜑)
46 iuninc.2 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
4746sbt 2066 . . . . . . . . 9 [𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
48 sbim 2303 . . . . . . . . . 10 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
49 sban 2080 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ))
50 sbv 2088 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝜑𝜑)
51 clelsb1 2868 . . . . . . . . . . . . 13 ([𝑘 / 𝑛]𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ)
5250, 51anbi12i 628 . . . . . . . . . . . 12 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ))
5349, 52bitr2i 276 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) ↔ [𝑘 / 𝑛](𝜑𝑛 ∈ ℕ))
54 sbsbc 3792 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
55 sbcssg 4520 . . . . . . . . . . . . 13 (𝑘 ∈ V → ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1))))
5655elv 3485 . . . . . . . . . . . 12 ([𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ 𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)))
57 csbfv 6956 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹𝑛) = (𝐹𝑘)
58 csbfv2g 6955 . . . . . . . . . . . . . . 15 (𝑘 ∈ V → 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1)))
5958elv 3485 . . . . . . . . . . . . . 14 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹𝑘 / 𝑛(𝑛 + 1))
60 csbov1g 7478 . . . . . . . . . . . . . . . 16 (𝑘 ∈ V → 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1))
6160elv 3485 . . . . . . . . . . . . . . 15 𝑘 / 𝑛(𝑛 + 1) = (𝑘 / 𝑛𝑛 + 1)
6261fveq2i 6909 . . . . . . . . . . . . . 14 (𝐹𝑘 / 𝑛(𝑛 + 1)) = (𝐹‘(𝑘 / 𝑛𝑛 + 1))
63 vex 3484 . . . . . . . . . . . . . . . . 17 𝑘 ∈ V
6463csbvargi 4435 . . . . . . . . . . . . . . . 16 𝑘 / 𝑛𝑛 = 𝑘
6564oveq1i 7441 . . . . . . . . . . . . . . 15 (𝑘 / 𝑛𝑛 + 1) = (𝑘 + 1)
6665fveq2i 6909 . . . . . . . . . . . . . 14 (𝐹‘(𝑘 / 𝑛𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6759, 62, 663eqtri 2769 . . . . . . . . . . . . 13 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1))
6857, 67sseq12i 4014 . . . . . . . . . . . 12 (𝑘 / 𝑛(𝐹𝑛) ⊆ 𝑘 / 𝑛(𝐹‘(𝑛 + 1)) ↔ (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
6954, 56, 683bitrri 298 . . . . . . . . . . 11 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
7053, 69imbi12i 350 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))) ↔ ([𝑘 / 𝑛](𝜑𝑛 ∈ ℕ) → [𝑘 / 𝑛](𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))))
7148, 70bitr4i 278 . . . . . . . . 9 ([𝑘 / 𝑛]((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1))))
7247, 71mpbi 230 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)))
73 ssequn1 4186 . . . . . . . 8 ((𝐹𝑘) ⊆ (𝐹‘(𝑘 + 1)) ↔ ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7472, 73sylib 218 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7545, 30, 74syl2anc 584 . . . . . 6 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → ((𝐹𝑘) ∪ (𝐹‘(𝑘 + 1))) = (𝐹‘(𝑘 + 1)))
7642, 44, 753eqtrd 2781 . . . . 5 (((𝑘 ∈ ℕ ∧ 𝜑) ∧ 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))
7776exp31 419 . . . 4 (𝑘 ∈ ℕ → (𝜑 → ( 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘) → 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
7877a2d 29 . . 3 (𝑘 ∈ ℕ → ((𝜑 𝑛 ∈ (1...𝑘)(𝐹𝑛) = (𝐹𝑘)) → (𝜑 𝑛 ∈ (1...(𝑘 + 1))(𝐹𝑛) = (𝐹‘(𝑘 + 1)))))
795, 10, 15, 20, 29, 78nnind 12284 . 2 (𝑖 ∈ ℕ → (𝜑 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖)))
8079impcom 407 1 ((𝜑𝑖 ∈ ℕ) → 𝑛 ∈ (1...𝑖)(𝐹𝑛) = (𝐹𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  [wsb 2064  wcel 2108  Vcvv 3480  [wsbc 3788  csb 3899  cun 3949  wss 3951  {csn 4626   ciun 4991   Fn wfn 6556  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158  cn 12266  cz 12613  cuz 12878  ...cfz 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548
This theorem is referenced by:  meascnbl  34220
  Copyright terms: Public domain W3C validator