| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinvalf | Structured version Visualization version GIF version | ||
| Description: Same as esumpfinval 34065, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| esumpfinvalf.1 | ⊢ Ⅎ𝑘𝐴 |
| esumpfinvalf.2 | ⊢ Ⅎ𝑘𝜑 |
| esumpfinvalf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| esumpfinvalf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| Ref | Expression |
|---|---|
| esumpfinvalf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34018 | . . . 4 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | xrge0base 32952 | . . . . . 6 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 3 | xrge00 32953 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 4 | xrge0cmn 21325 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 6 | xrge0tps 33932 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 8 | esumpfinvalf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 9 | esumpfinvalf.2 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 10 | esumpfinvalf.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
| 11 | nfcv 2891 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
| 12 | icossicc 13397 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 13 | esumpfinvalf.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
| 14 | 12, 13 | sselid 3944 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 16 | 9, 10, 11, 14, 15 | fmptdF 32580 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 17 | c0ex 11168 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
| 19 | 16, 8, 18 | fdmfifsupp 9326 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
| 20 | xrge0topn 33933 | . . . . . . 7 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 21 | 20 | eqcomi 2738 | . . . . . 6 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 22 | xrhaus 23272 | . . . . . . . 8 ⊢ (ordTop‘ ≤ ) ∈ Haus | |
| 23 | ovex 7420 | . . . . . . . 8 ⊢ (0[,]+∞) ∈ V | |
| 24 | resthaus 23255 | . . . . . . . 8 ⊢ (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . . . . 7 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus |
| 26 | 25 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) |
| 27 | 2, 3, 5, 7, 8, 16, 19, 21, 26 | haustsmsid 24028 | . . . . 5 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
| 28 | 27 | unieqd 4884 | . . . 4 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
| 29 | 1, 28 | eqtrid 2776 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
| 30 | ovex 7420 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
| 31 | 30 | unisn 4890 | . . 3 ⊢ ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))} = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 32 | 29, 31 | eqtrdi 2780 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 33 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑘(0[,)+∞) | |
| 34 | 9, 10, 33, 13, 15 | fmptdF 32580 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
| 35 | esumpfinvallem 34064 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
| 36 | 8, 34, 35 | syl2anc 584 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 37 | rge0ssre 13417 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ ℝ | |
| 38 | ax-resscn 11125 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 39 | 37, 38 | sstri 3956 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℂ |
| 40 | 39, 13 | sselid 3944 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 41 | 40 | sbt 2067 | . . . . 5 ⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 42 | sbim 2303 | . . . . . 6 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ)) | |
| 43 | sban 2081 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴)) | |
| 44 | 9 | sbf 2271 | . . . . . . . . 9 ⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
| 45 | 10 | clelsb1fw 2895 | . . . . . . . . 9 ⊢ ([𝑙 / 𝑘]𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴) |
| 46 | 44, 45 | anbi12i 628 | . . . . . . . 8 ⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
| 47 | 43, 46 | bitri 275 | . . . . . . 7 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
| 48 | sbsbc 3757 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ) | |
| 49 | sbcel1g 4379 | . . . . . . . . 9 ⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) | |
| 50 | 49 | elv 3452 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
| 51 | 48, 50 | bitri 275 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
| 52 | 47, 51 | imbi12i 350 | . . . . . 6 ⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
| 53 | 42, 52 | bitri 275 | . . . . 5 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
| 54 | 41, 53 | mpbi 230 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
| 55 | 8, 54 | gsumfsum 21351 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵) |
| 56 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑙𝐴 | |
| 57 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑙𝐵 | |
| 58 | nfcsb1v 3886 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 | |
| 59 | csbeq1a 3876 | . . . . 5 ⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) | |
| 60 | 10, 56, 57, 58, 59 | cbvmptf 5207 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
| 61 | 60 | oveq2i 7398 | . . 3 ⊢ (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = (ℂfld Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) |
| 62 | 59, 57, 58 | cbvsum 15661 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵 |
| 63 | 55, 61, 62 | 3eqtr4g 2789 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
| 64 | 32, 36, 63 | 3eqtr2d 2770 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3447 [wsbc 3753 ⦋csb 3862 {csn 4589 ∪ cuni 4871 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ≤ cle 11209 [,)cico 13308 [,]cicc 13309 Σcsu 15652 ↾s cress 17200 ↾t crest 17383 TopOpenctopn 17384 Σg cgsu 17403 ordTopcordt 17462 ℝ*𝑠cxrs 17463 CMndccmn 19710 ℂfldccnfld 21264 TopSpctps 22819 Hauscha 23195 tsums ctsu 24013 Σ*cesum 34017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-fi 9362 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-rest 17385 df-topn 17386 df-0g 17404 df-gsum 17405 df-topgen 17406 df-ordt 17464 df-xrs 17465 df-ps 18525 df-tsr 18526 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-cring 20145 df-fbas 21261 df-fg 21262 df-cnfld 21265 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-cld 22906 df-ntr 22907 df-cls 22908 df-nei 22985 df-cn 23114 df-haus 23202 df-fil 23733 df-fm 23825 df-flim 23826 df-flf 23827 df-tsms 24014 df-esum 34018 |
| This theorem is referenced by: volfiniune 34220 |
| Copyright terms: Public domain | W3C validator |