Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvalf Structured version   Visualization version   GIF version

Theorem esumpfinvalf 32053
Description: Same as esumpfinval 32052, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinvalf.1 𝑘𝐴
esumpfinvalf.2 𝑘𝜑
esumpfinvalf.a (𝜑𝐴 ∈ Fin)
esumpfinvalf.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpfinvalf (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)

Proof of Theorem esumpfinvalf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 df-esum 32005 . . . 4 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 xrge0base 31303 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
3 xrge00 31304 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4 xrge0cmn 20651 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
54a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
6 xrge0tps 31901 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
76a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
8 esumpfinvalf.a . . . . . 6 (𝜑𝐴 ∈ Fin)
9 esumpfinvalf.2 . . . . . . 7 𝑘𝜑
10 esumpfinvalf.1 . . . . . . 7 𝑘𝐴
11 nfcv 2909 . . . . . . 7 𝑘(0[,]+∞)
12 icossicc 13179 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
13 esumpfinvalf.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1412, 13sselid 3924 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
15 eqid 2740 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
169, 10, 11, 14, 15fmptdF 31002 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
17 c0ex 10980 . . . . . . . 8 0 ∈ V
1817a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
1916, 8, 18fdmfifsupp 9126 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
20 xrge0topn 31902 . . . . . . 7 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2120eqcomi 2749 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
22 xrhaus 22547 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Haus
23 ovex 7305 . . . . . . . 8 (0[,]+∞) ∈ V
24 resthaus 22530 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2522, 23, 24mp2an 689 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus
2625a1i 11 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
272, 3, 5, 7, 8, 16, 19, 21, 26haustsmsid 23303 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
2827unieqd 4859 . . . 4 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
291, 28eqtrid 2792 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
30 ovex 7305 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ V
3130unisn 4867 . . 3 {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))} = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))
3229, 31eqtrdi 2796 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
33 nfcv 2909 . . . 4 𝑘(0[,)+∞)
349, 10, 33, 13, 15fmptdF 31002 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
35 esumpfinvallem 32051 . . 3 ((𝐴 ∈ Fin ∧ (𝑘𝐴𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
368, 34, 35syl2anc 584 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
37 rge0ssre 13199 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
38 ax-resscn 10939 . . . . . . . 8 ℝ ⊆ ℂ
3937, 38sstri 3935 . . . . . . 7 (0[,)+∞) ⊆ ℂ
4039, 13sselid 3924 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4140sbt 2073 . . . . 5 [𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
42 sbim 2304 . . . . . 6 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ))
43 sban 2087 . . . . . . . 8 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴))
449sbf 2267 . . . . . . . . 9 ([𝑙 / 𝑘]𝜑𝜑)
4510clelsb1fw 2913 . . . . . . . . 9 ([𝑙 / 𝑘]𝑘𝐴𝑙𝐴)
4644, 45anbi12i 627 . . . . . . . 8 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴) ↔ (𝜑𝑙𝐴))
4743, 46bitri 274 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴))
48 sbsbc 3724 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ)
49 sbcel1g 4353 . . . . . . . . 9 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ))
5049elv 3437 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5148, 50bitri 274 . . . . . . 7 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5247, 51imbi12i 351 . . . . . 6 (([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5342, 52bitri 274 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5441, 53mpbi 229 . . . 4 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ)
558, 54gsumfsum 20676 . . 3 (𝜑 → (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵)) = Σ𝑙𝐴 𝑙 / 𝑘𝐵)
56 nfcv 2909 . . . . 5 𝑙𝐴
57 nfcv 2909 . . . . 5 𝑙𝐵
58 nfcsb1v 3862 . . . . 5 𝑘𝑙 / 𝑘𝐵
59 csbeq1a 3851 . . . . 5 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6010, 56, 57, 58, 59cbvmptf 5188 . . . 4 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
6160oveq2i 7283 . . 3 (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵))
6259, 56, 10, 57, 58cbvsum 15418 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑙𝐴 𝑙 / 𝑘𝐵
6355, 61, 623eqtr4g 2805 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
6432, 36, 633eqtr2d 2786 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wnf 1790  [wsb 2071  wcel 2110  wnfc 2889  Vcvv 3431  [wsbc 3720  csb 3837  {csn 4567   cuni 4845  cmpt 5162  wf 6428  cfv 6432  (class class class)co 7272  Fincfn 8725  cc 10880  cr 10881  0cc0 10882  +∞cpnf 11017  cle 11021  [,)cico 13092  [,]cicc 13093  Σcsu 15408  s cress 16952  t crest 17142  TopOpenctopn 17143   Σg cgsu 17162  ordTopcordt 17221  *𝑠cxrs 17222  CMndccmn 19397  fldccnfld 20608  TopSpctps 22092  Hauscha 22470   tsums ctsu 23288  Σ*cesum 32004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-oi 9257  df-card 9708  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-z 12331  df-dec 12449  df-uz 12594  df-rp 12742  df-xadd 12860  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-seq 13733  df-exp 13794  df-hash 14056  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-clim 15208  df-sum 15409  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-ordt 17223  df-xrs 17224  df-ps 18295  df-tsr 18296  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-grp 18591  df-minusg 18592  df-cntz 18934  df-cmn 19399  df-abl 19400  df-mgp 19732  df-ur 19749  df-ring 19796  df-cring 19797  df-fbas 20605  df-fg 20606  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-nei 22260  df-cn 22389  df-haus 22477  df-fil 23008  df-fm 23100  df-flim 23101  df-flf 23102  df-tsms 23289  df-esum 32005
This theorem is referenced by:  volfiniune  32207
  Copyright terms: Public domain W3C validator