| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinvalf | Structured version Visualization version GIF version | ||
| Description: Same as esumpfinval 34052, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.) |
| Ref | Expression |
|---|---|
| esumpfinvalf.1 | ⊢ Ⅎ𝑘𝐴 |
| esumpfinvalf.2 | ⊢ Ⅎ𝑘𝜑 |
| esumpfinvalf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| esumpfinvalf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| Ref | Expression |
|---|---|
| esumpfinvalf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-esum 34005 | . . . 4 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
| 2 | xrge0base 32952 | . . . . . 6 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 3 | xrge00 32953 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
| 4 | xrge0cmn 21374 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
| 5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
| 6 | xrge0tps 33919 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
| 7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
| 8 | esumpfinvalf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 9 | esumpfinvalf.2 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
| 10 | esumpfinvalf.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
| 11 | nfcv 2898 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
| 12 | icossicc 13451 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 13 | esumpfinvalf.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
| 14 | 12, 13 | sselid 3956 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| 15 | eqid 2735 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
| 16 | 9, 10, 11, 14, 15 | fmptdF 32580 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
| 17 | c0ex 11227 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
| 19 | 16, 8, 18 | fdmfifsupp 9385 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
| 20 | xrge0topn 33920 | . . . . . . 7 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
| 21 | 20 | eqcomi 2744 | . . . . . 6 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
| 22 | xrhaus 23321 | . . . . . . . 8 ⊢ (ordTop‘ ≤ ) ∈ Haus | |
| 23 | ovex 7436 | . . . . . . . 8 ⊢ (0[,]+∞) ∈ V | |
| 24 | resthaus 23304 | . . . . . . . 8 ⊢ (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) | |
| 25 | 22, 23, 24 | mp2an 692 | . . . . . . 7 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus |
| 26 | 25 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) |
| 27 | 2, 3, 5, 7, 8, 16, 19, 21, 26 | haustsmsid 24077 | . . . . 5 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
| 28 | 27 | unieqd 4896 | . . . 4 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
| 29 | 1, 28 | eqtrid 2782 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
| 30 | ovex 7436 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
| 31 | 30 | unisn 4902 | . . 3 ⊢ ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))} = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) |
| 32 | 29, 31 | eqtrdi 2786 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 33 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑘(0[,)+∞) | |
| 34 | 9, 10, 33, 13, 15 | fmptdF 32580 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
| 35 | esumpfinvallem 34051 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
| 36 | 8, 34, 35 | syl2anc 584 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
| 37 | rge0ssre 13471 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ ℝ | |
| 38 | ax-resscn 11184 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 39 | 37, 38 | sstri 3968 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℂ |
| 40 | 39, 13 | sselid 3956 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 41 | 40 | sbt 2066 | . . . . 5 ⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 42 | sbim 2303 | . . . . . 6 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ)) | |
| 43 | sban 2080 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴)) | |
| 44 | 9 | sbf 2271 | . . . . . . . . 9 ⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
| 45 | 10 | clelsb1fw 2902 | . . . . . . . . 9 ⊢ ([𝑙 / 𝑘]𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴) |
| 46 | 44, 45 | anbi12i 628 | . . . . . . . 8 ⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
| 47 | 43, 46 | bitri 275 | . . . . . . 7 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
| 48 | sbsbc 3769 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ) | |
| 49 | sbcel1g 4391 | . . . . . . . . 9 ⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) | |
| 50 | 49 | elv 3464 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
| 51 | 48, 50 | bitri 275 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
| 52 | 47, 51 | imbi12i 350 | . . . . . 6 ⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
| 53 | 42, 52 | bitri 275 | . . . . 5 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
| 54 | 41, 53 | mpbi 230 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
| 55 | 8, 54 | gsumfsum 21400 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵) |
| 56 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑙𝐴 | |
| 57 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑙𝐵 | |
| 58 | nfcsb1v 3898 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 | |
| 59 | csbeq1a 3888 | . . . . 5 ⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) | |
| 60 | 10, 56, 57, 58, 59 | cbvmptf 5221 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
| 61 | 60 | oveq2i 7414 | . . 3 ⊢ (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = (ℂfld Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) |
| 62 | 59, 57, 58 | cbvsum 15709 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵 |
| 63 | 55, 61, 62 | 3eqtr4g 2795 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
| 64 | 32, 36, 63 | 3eqtr2d 2776 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 [wsb 2064 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 [wsbc 3765 ⦋csb 3874 {csn 4601 ∪ cuni 4883 ↦ cmpt 5201 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Fincfn 8957 ℂcc 11125 ℝcr 11126 0cc0 11127 +∞cpnf 11264 ≤ cle 11268 [,)cico 13362 [,]cicc 13363 Σcsu 15700 ↾s cress 17249 ↾t crest 17432 TopOpenctopn 17433 Σg cgsu 17452 ordTopcordt 17511 ℝ*𝑠cxrs 17512 CMndccmn 19759 ℂfldccnfld 21313 TopSpctps 22868 Hauscha 23244 tsums ctsu 24062 Σ*cesum 34004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-fi 9421 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-xadd 13127 df-ico 13366 df-icc 13367 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-ordt 17513 df-xrs 17514 df-ps 18574 df-tsr 18575 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-ur 20140 df-ring 20193 df-cring 20194 df-fbas 21310 df-fg 21311 df-cnfld 21314 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-cld 22955 df-ntr 22956 df-cls 22957 df-nei 23034 df-cn 23163 df-haus 23251 df-fil 23782 df-fm 23874 df-flim 23875 df-flf 23876 df-tsms 24063 df-esum 34005 |
| This theorem is referenced by: volfiniune 34207 |
| Copyright terms: Public domain | W3C validator |