Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvalf Structured version   Visualization version   GIF version

Theorem esumpfinvalf 34040
Description: Same as esumpfinval 34039, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinvalf.1 𝑘𝐴
esumpfinvalf.2 𝑘𝜑
esumpfinvalf.a (𝜑𝐴 ∈ Fin)
esumpfinvalf.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpfinvalf (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)

Proof of Theorem esumpfinvalf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 df-esum 33992 . . . 4 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 xrge0base 32997 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
3 xrge00 32998 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4 xrge0cmn 21449 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
54a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
6 xrge0tps 33888 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
76a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
8 esumpfinvalf.a . . . . . 6 (𝜑𝐴 ∈ Fin)
9 esumpfinvalf.2 . . . . . . 7 𝑘𝜑
10 esumpfinvalf.1 . . . . . . 7 𝑘𝐴
11 nfcv 2908 . . . . . . 7 𝑘(0[,]+∞)
12 icossicc 13496 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
13 esumpfinvalf.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1412, 13sselid 4006 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
15 eqid 2740 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
169, 10, 11, 14, 15fmptdF 32674 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
17 c0ex 11284 . . . . . . . 8 0 ∈ V
1817a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
1916, 8, 18fdmfifsupp 9444 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
20 xrge0topn 33889 . . . . . . 7 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2120eqcomi 2749 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
22 xrhaus 23414 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Haus
23 ovex 7481 . . . . . . . 8 (0[,]+∞) ∈ V
24 resthaus 23397 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2522, 23, 24mp2an 691 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus
2625a1i 11 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
272, 3, 5, 7, 8, 16, 19, 21, 26haustsmsid 24170 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
2827unieqd 4944 . . . 4 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
291, 28eqtrid 2792 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
30 ovex 7481 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ V
3130unisn 4950 . . 3 {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))} = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))
3229, 31eqtrdi 2796 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
33 nfcv 2908 . . . 4 𝑘(0[,)+∞)
349, 10, 33, 13, 15fmptdF 32674 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
35 esumpfinvallem 34038 . . 3 ((𝐴 ∈ Fin ∧ (𝑘𝐴𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
368, 34, 35syl2anc 583 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
37 rge0ssre 13516 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
38 ax-resscn 11241 . . . . . . . 8 ℝ ⊆ ℂ
3937, 38sstri 4018 . . . . . . 7 (0[,)+∞) ⊆ ℂ
4039, 13sselid 4006 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4140sbt 2066 . . . . 5 [𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
42 sbim 2307 . . . . . 6 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ))
43 sban 2080 . . . . . . . 8 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴))
449sbf 2272 . . . . . . . . 9 ([𝑙 / 𝑘]𝜑𝜑)
4510clelsb1fw 2912 . . . . . . . . 9 ([𝑙 / 𝑘]𝑘𝐴𝑙𝐴)
4644, 45anbi12i 627 . . . . . . . 8 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴) ↔ (𝜑𝑙𝐴))
4743, 46bitri 275 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴))
48 sbsbc 3808 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ)
49 sbcel1g 4439 . . . . . . . . 9 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ))
5049elv 3493 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5148, 50bitri 275 . . . . . . 7 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5247, 51imbi12i 350 . . . . . 6 (([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5342, 52bitri 275 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5441, 53mpbi 230 . . . 4 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ)
558, 54gsumfsum 21475 . . 3 (𝜑 → (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵)) = Σ𝑙𝐴 𝑙 / 𝑘𝐵)
56 nfcv 2908 . . . . 5 𝑙𝐴
57 nfcv 2908 . . . . 5 𝑙𝐵
58 nfcsb1v 3946 . . . . 5 𝑘𝑙 / 𝑘𝐵
59 csbeq1a 3935 . . . . 5 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6010, 56, 57, 58, 59cbvmptf 5275 . . . 4 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
6160oveq2i 7459 . . 3 (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵))
6259, 57, 58cbvsum 15743 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑙𝐴 𝑙 / 𝑘𝐵
6355, 61, 623eqtr4g 2805 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
6432, 36, 633eqtr2d 2786 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  [wsb 2064  wcel 2108  wnfc 2893  Vcvv 3488  [wsbc 3804  csb 3921  {csn 4648   cuni 4931  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  +∞cpnf 11321  cle 11325  [,)cico 13409  [,]cicc 13410  Σcsu 15734  s cress 17287  t crest 17480  TopOpenctopn 17481   Σg cgsu 17500  ordTopcordt 17559  *𝑠cxrs 17560  CMndccmn 19822  fldccnfld 21387  TopSpctps 22959  Hauscha 23337   tsums ctsu 24155  Σ*cesum 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-xadd 13176  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-ordt 17561  df-xrs 17562  df-ps 18636  df-tsr 18637  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-cring 20263  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-tsms 24156  df-esum 33992
This theorem is referenced by:  volfiniune  34194
  Copyright terms: Public domain W3C validator