Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumpfinvalf | Structured version Visualization version GIF version |
Description: Same as esumpfinval 32052, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.) |
Ref | Expression |
---|---|
esumpfinvalf.1 | ⊢ Ⅎ𝑘𝐴 |
esumpfinvalf.2 | ⊢ Ⅎ𝑘𝜑 |
esumpfinvalf.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
esumpfinvalf.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
esumpfinvalf | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-esum 32005 | . . . 4 ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) | |
2 | xrge0base 31303 | . . . . . 6 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
3 | xrge00 31304 | . . . . . 6 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
4 | xrge0cmn 20651 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
6 | xrge0tps 31901 | . . . . . . 7 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
7 | 6 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
8 | esumpfinvalf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
9 | esumpfinvalf.2 | . . . . . . 7 ⊢ Ⅎ𝑘𝜑 | |
10 | esumpfinvalf.1 | . . . . . . 7 ⊢ Ⅎ𝑘𝐴 | |
11 | nfcv 2909 | . . . . . . 7 ⊢ Ⅎ𝑘(0[,]+∞) | |
12 | icossicc 13179 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
13 | esumpfinvalf.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | |
14 | 12, 13 | sselid 3924 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
15 | eqid 2740 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
16 | 9, 10, 11, 14, 15 | fmptdF 31002 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
17 | c0ex 10980 | . . . . . . . 8 ⊢ 0 ∈ V | |
18 | 17 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ V) |
19 | 16, 8, 18 | fdmfifsupp 9126 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
20 | xrge0topn 31902 | . . . . . . 7 ⊢ (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | |
21 | 20 | eqcomi 2749 | . . . . . 6 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠 ↾s (0[,]+∞))) |
22 | xrhaus 22547 | . . . . . . . 8 ⊢ (ordTop‘ ≤ ) ∈ Haus | |
23 | ovex 7305 | . . . . . . . 8 ⊢ (0[,]+∞) ∈ V | |
24 | resthaus 22530 | . . . . . . . 8 ⊢ (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) | |
25 | 22, 23, 24 | mp2an 689 | . . . . . . 7 ⊢ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus |
26 | 25 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus) |
27 | 2, 3, 5, 7, 8, 16, 19, 21, 26 | haustsmsid 23303 | . . . . 5 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
28 | 27 | unieqd 4859 | . . . 4 ⊢ (𝜑 → ∪ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
29 | 1, 28 | eqtrid 2792 | . . 3 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))}) |
30 | ovex 7305 | . . . 4 ⊢ ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ V | |
31 | 30 | unisn 4867 | . . 3 ⊢ ∪ {((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))} = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) |
32 | 29, 31 | eqtrdi 2796 | . 2 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
33 | nfcv 2909 | . . . 4 ⊢ Ⅎ𝑘(0[,)+∞) | |
34 | 9, 10, 33, 13, 15 | fmptdF 31002 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) |
35 | esumpfinvallem 32051 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) | |
36 | 8, 34, 35 | syl2anc 584 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
37 | rge0ssre 13199 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ ℝ | |
38 | ax-resscn 10939 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
39 | 37, 38 | sstri 3935 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℂ |
40 | 39, 13 | sselid 3924 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
41 | 40 | sbt 2073 | . . . . 5 ⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
42 | sbim 2304 | . . . . . 6 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ)) | |
43 | sban 2087 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴)) | |
44 | 9 | sbf 2267 | . . . . . . . . 9 ⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
45 | 10 | clelsb1fw 2913 | . . . . . . . . 9 ⊢ ([𝑙 / 𝑘]𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴) |
46 | 44, 45 | anbi12i 627 | . . . . . . . 8 ⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
47 | 43, 46 | bitri 274 | . . . . . . 7 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴)) |
48 | sbsbc 3724 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ) | |
49 | sbcel1g 4353 | . . . . . . . . 9 ⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) | |
50 | 49 | elv 3437 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
51 | 48, 50 | bitri 274 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
52 | 47, 51 | imbi12i 351 | . . . . . 6 ⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ 𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
53 | 42, 52 | bitri 274 | . . . . 5 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ)) |
54 | 41, 53 | mpbi 229 | . . . 4 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐵 ∈ ℂ) |
55 | 8, 54 | gsumfsum 20676 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵) |
56 | nfcv 2909 | . . . . 5 ⊢ Ⅎ𝑙𝐴 | |
57 | nfcv 2909 | . . . . 5 ⊢ Ⅎ𝑙𝐵 | |
58 | nfcsb1v 3862 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 | |
59 | csbeq1a 3851 | . . . . 5 ⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) | |
60 | 10, 56, 57, 58, 59 | cbvmptf 5188 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
61 | 60 | oveq2i 7283 | . . 3 ⊢ (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = (ℂfld Σg (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵)) |
62 | 59, 56, 10, 57, 58 | cbvsum 15418 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐵 |
63 | 55, 61, 62 | 3eqtr4g 2805 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) |
64 | 32, 36, 63 | 3eqtr2d 2786 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 Ⅎwnf 1790 [wsb 2071 ∈ wcel 2110 Ⅎwnfc 2889 Vcvv 3431 [wsbc 3720 ⦋csb 3837 {csn 4567 ∪ cuni 4845 ↦ cmpt 5162 ⟶wf 6428 ‘cfv 6432 (class class class)co 7272 Fincfn 8725 ℂcc 10880 ℝcr 10881 0cc0 10882 +∞cpnf 11017 ≤ cle 11021 [,)cico 13092 [,]cicc 13093 Σcsu 15408 ↾s cress 16952 ↾t crest 17142 TopOpenctopn 17143 Σg cgsu 17162 ordTopcordt 17221 ℝ*𝑠cxrs 17222 CMndccmn 19397 ℂfldccnfld 20608 TopSpctps 22092 Hauscha 22470 tsums ctsu 23288 Σ*cesum 32004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-inf2 9387 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 ax-pre-sup 10960 ax-addf 10961 ax-mulf 10962 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-1st 7825 df-2nd 7826 df-supp 7970 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-1o 8289 df-er 8490 df-map 8609 df-en 8726 df-dom 8727 df-sdom 8728 df-fin 8729 df-fsupp 9117 df-fi 9158 df-sup 9189 df-oi 9257 df-card 9708 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-div 11644 df-nn 11985 df-2 12047 df-3 12048 df-4 12049 df-5 12050 df-6 12051 df-7 12052 df-8 12053 df-9 12054 df-n0 12245 df-z 12331 df-dec 12449 df-uz 12594 df-rp 12742 df-xadd 12860 df-ico 13096 df-icc 13097 df-fz 13251 df-fzo 13394 df-seq 13733 df-exp 13794 df-hash 14056 df-cj 14821 df-re 14822 df-im 14823 df-sqrt 14957 df-abs 14958 df-clim 15208 df-sum 15409 df-struct 16859 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-starv 16988 df-tset 16992 df-ple 16993 df-ds 16995 df-unif 16996 df-rest 17144 df-topn 17145 df-0g 17163 df-gsum 17164 df-topgen 17165 df-ordt 17223 df-xrs 17224 df-ps 18295 df-tsr 18296 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-submnd 18442 df-grp 18591 df-minusg 18592 df-cntz 18934 df-cmn 19399 df-abl 19400 df-mgp 19732 df-ur 19749 df-ring 19796 df-cring 19797 df-fbas 20605 df-fg 20606 df-cnfld 20609 df-top 22054 df-topon 22071 df-topsp 22093 df-bases 22107 df-cld 22181 df-ntr 22182 df-cls 22183 df-nei 22260 df-cn 22389 df-haus 22477 df-fil 23008 df-fm 23100 df-flim 23101 df-flf 23102 df-tsms 23289 df-esum 32005 |
This theorem is referenced by: volfiniune 32207 |
Copyright terms: Public domain | W3C validator |