Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumpfinvalf Structured version   Visualization version   GIF version

Theorem esumpfinvalf 34056
Description: Same as esumpfinval 34055, minus distinct variable restrictions. (Contributed by Thierry Arnoux, 28-Aug-2017.) (Proof shortened by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
esumpfinvalf.1 𝑘𝐴
esumpfinvalf.2 𝑘𝜑
esumpfinvalf.a (𝜑𝐴 ∈ Fin)
esumpfinvalf.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
esumpfinvalf (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)

Proof of Theorem esumpfinvalf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 df-esum 34008 . . . 4 Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
2 xrge0base 32998 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
3 xrge00 32999 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4 xrge0cmn 21443 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
54a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
6 xrge0tps 33902 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
76a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
8 esumpfinvalf.a . . . . . 6 (𝜑𝐴 ∈ Fin)
9 esumpfinvalf.2 . . . . . . 7 𝑘𝜑
10 esumpfinvalf.1 . . . . . . 7 𝑘𝐴
11 nfcv 2902 . . . . . . 7 𝑘(0[,]+∞)
12 icossicc 13472 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
13 esumpfinvalf.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1412, 13sselid 3992 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
15 eqid 2734 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
169, 10, 11, 14, 15fmptdF 32672 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
17 c0ex 11252 . . . . . . . 8 0 ∈ V
1817a1i 11 . . . . . . 7 (𝜑 → 0 ∈ V)
1916, 8, 18fdmfifsupp 9412 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
20 xrge0topn 33903 . . . . . . 7 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
2120eqcomi 2743 . . . . . 6 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
22 xrhaus 23408 . . . . . . . 8 (ordTop‘ ≤ ) ∈ Haus
23 ovex 7463 . . . . . . . 8 (0[,]+∞) ∈ V
24 resthaus 23391 . . . . . . . 8 (((ordTop‘ ≤ ) ∈ Haus ∧ (0[,]+∞) ∈ V) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
2522, 23, 24mp2an 692 . . . . . . 7 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus
2625a1i 11 . . . . . 6 (𝜑 → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ Haus)
272, 3, 5, 7, 8, 16, 19, 21, 26haustsmsid 24164 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
2827unieqd 4924 . . . 4 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)) = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
291, 28eqtrid 2786 . . 3 (𝜑 → Σ*𝑘𝐴𝐵 = {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))})
30 ovex 7463 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ V
3130unisn 4930 . . 3 {((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))} = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))
3229, 31eqtrdi 2790 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
33 nfcv 2902 . . . 4 𝑘(0[,)+∞)
349, 10, 33, 13, 15fmptdF 32672 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
35 esumpfinvallem 34054 . . 3 ((𝐴 ∈ Fin ∧ (𝑘𝐴𝐵):𝐴⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
368, 34, 35syl2anc 584 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
37 rge0ssre 13492 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
38 ax-resscn 11209 . . . . . . . 8 ℝ ⊆ ℂ
3937, 38sstri 4004 . . . . . . 7 (0[,)+∞) ⊆ ℂ
4039, 13sselid 3992 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
4140sbt 2063 . . . . 5 [𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
42 sbim 2301 . . . . . 6 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ))
43 sban 2077 . . . . . . . 8 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴))
449sbf 2268 . . . . . . . . 9 ([𝑙 / 𝑘]𝜑𝜑)
4510clelsb1fw 2906 . . . . . . . . 9 ([𝑙 / 𝑘]𝑘𝐴𝑙𝐴)
4644, 45anbi12i 628 . . . . . . . 8 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘𝐴) ↔ (𝜑𝑙𝐴))
4743, 46bitri 275 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴))
48 sbsbc 3794 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ [𝑙 / 𝑘]𝐵 ∈ ℂ)
49 sbcel1g 4421 . . . . . . . . 9 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ))
5049elv 3482 . . . . . . . 8 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5148, 50bitri 275 . . . . . . 7 ([𝑙 / 𝑘]𝐵 ∈ ℂ ↔ 𝑙 / 𝑘𝐵 ∈ ℂ)
5247, 51imbi12i 350 . . . . . 6 (([𝑙 / 𝑘](𝜑𝑘𝐴) → [𝑙 / 𝑘]𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5342, 52bitri 275 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘𝐴) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ))
5441, 53mpbi 230 . . . 4 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐵 ∈ ℂ)
558, 54gsumfsum 21469 . . 3 (𝜑 → (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵)) = Σ𝑙𝐴 𝑙 / 𝑘𝐵)
56 nfcv 2902 . . . . 5 𝑙𝐴
57 nfcv 2902 . . . . 5 𝑙𝐵
58 nfcsb1v 3932 . . . . 5 𝑘𝑙 / 𝑘𝐵
59 csbeq1a 3921 . . . . 5 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
6010, 56, 57, 58, 59cbvmptf 5256 . . . 4 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
6160oveq2i 7441 . . 3 (ℂfld Σg (𝑘𝐴𝐵)) = (ℂfld Σg (𝑙𝐴𝑙 / 𝑘𝐵))
6259, 57, 58cbvsum 15727 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑙𝐴 𝑙 / 𝑘𝐵
6355, 61, 623eqtr4g 2799 . 2 (𝜑 → (ℂfld Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
6432, 36, 633eqtr2d 2780 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wnf 1779  [wsb 2061  wcel 2105  wnfc 2887  Vcvv 3477  [wsbc 3790  csb 3907  {csn 4630   cuni 4911  cmpt 5230  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  +∞cpnf 11289  cle 11293  [,)cico 13385  [,]cicc 13386  Σcsu 15718  s cress 17273  t crest 17466  TopOpenctopn 17467   Σg cgsu 17486  ordTopcordt 17545  *𝑠cxrs 17546  CMndccmn 19812  fldccnfld 21381  TopSpctps 22953  Hauscha 23331   tsums ctsu 24149  Σ*cesum 34007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-xadd 13152  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-ordt 17547  df-xrs 17548  df-ps 18623  df-tsr 18624  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-ur 20199  df-ring 20252  df-cring 20253  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-haus 23338  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-tsms 24150  df-esum 34008
This theorem is referenced by:  volfiniune  34210
  Copyright terms: Public domain W3C validator