Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppss2f | Structured version Visualization version GIF version |
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.) |
Ref | Expression |
---|---|
suppss2f.p | ⊢ Ⅎ𝑘𝜑 |
suppss2f.a | ⊢ Ⅎ𝑘𝐴 |
suppss2f.w | ⊢ Ⅎ𝑘𝑊 |
suppss2f.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
suppss2f.v | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppss2f | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppss2f.a | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑙𝐴 | |
3 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑙𝐵 | |
4 | nfcsb1v 3853 | . . . 4 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 | |
5 | csbeq1a 3842 | . . . 4 ⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5179 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
7 | 6 | oveq1i 7265 | . 2 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ((𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) supp 𝑍) |
8 | suppss2f.n | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
9 | 8 | sbt 2070 | . . . 4 ⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
10 | sbim 2303 | . . . . 5 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍)) | |
11 | sban 2084 | . . . . . . 7 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊))) | |
12 | suppss2f.p | . . . . . . . . 9 ⊢ Ⅎ𝑘𝜑 | |
13 | 12 | sbf 2266 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
14 | suppss2f.w | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑊 | |
15 | 1, 14 | nfdif 4056 | . . . . . . . . 9 ⊢ Ⅎ𝑘(𝐴 ∖ 𝑊) |
16 | 15 | clelsb1fw 2910 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑙 ∈ (𝐴 ∖ 𝑊)) |
17 | 13, 16 | anbi12i 626 | . . . . . . 7 ⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ (𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊))) |
18 | 11, 17 | bitri 274 | . . . . . 6 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ (𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊))) |
19 | sbsbc 3715 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ [𝑙 / 𝑘]𝐵 = 𝑍) | |
20 | sbceq1g 4345 | . . . . . . . 8 ⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) | |
21 | 20 | elv 3428 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
22 | 19, 21 | bitri 274 | . . . . . 6 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
23 | 18, 22 | imbi12i 350 | . . . . 5 ⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍) ↔ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) |
24 | 10, 23 | bitri 274 | . . . 4 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) ↔ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) |
25 | 9, 24 | mpbi 229 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
26 | suppss2f.v | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
27 | 25, 26 | suppss2 7987 | . 2 ⊢ (𝜑 → ((𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) supp 𝑍) ⊆ 𝑊) |
28 | 7, 27 | eqsstrid 3965 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 [wsb 2068 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 [wsbc 3711 ⦋csb 3828 ∖ cdif 3880 ⊆ wss 3883 ↦ cmpt 5153 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: elrspunidl 31508 esumss 31940 |
Copyright terms: Public domain | W3C validator |