Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss2f Structured version   Visualization version   GIF version

Theorem suppss2f 30970
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.)
Hypotheses
Ref Expression
suppss2f.p 𝑘𝜑
suppss2f.a 𝑘𝐴
suppss2f.w 𝑘𝑊
suppss2f.n ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
suppss2f.v (𝜑𝐴𝑉)
Assertion
Ref Expression
suppss2f (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem suppss2f
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 suppss2f.a . . . 4 𝑘𝐴
2 nfcv 2909 . . . 4 𝑙𝐴
3 nfcv 2909 . . . 4 𝑙𝐵
4 nfcsb1v 3862 . . . 4 𝑘𝑙 / 𝑘𝐵
5 csbeq1a 3851 . . . 4 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
61, 2, 3, 4, 5cbvmptf 5188 . . 3 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
76oveq1i 7281 . 2 ((𝑘𝐴𝐵) supp 𝑍) = ((𝑙𝐴𝑙 / 𝑘𝐵) supp 𝑍)
8 suppss2f.n . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
98sbt 2073 . . . 4 [𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
10 sbim 2304 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍) ↔ ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍))
11 sban 2087 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊)))
12 suppss2f.p . . . . . . . . 9 𝑘𝜑
1312sbf 2267 . . . . . . . 8 ([𝑙 / 𝑘]𝜑𝜑)
14 suppss2f.w . . . . . . . . . 10 𝑘𝑊
151, 14nfdif 4065 . . . . . . . . 9 𝑘(𝐴𝑊)
1615clelsb1fw 2913 . . . . . . . 8 ([𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊) ↔ 𝑙 ∈ (𝐴𝑊))
1713, 16anbi12i 627 . . . . . . 7 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊)) ↔ (𝜑𝑙 ∈ (𝐴𝑊)))
1811, 17bitri 274 . . . . . 6 ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) ↔ (𝜑𝑙 ∈ (𝐴𝑊)))
19 sbsbc 3724 . . . . . . 7 ([𝑙 / 𝑘]𝐵 = 𝑍[𝑙 / 𝑘]𝐵 = 𝑍)
20 sbceq1g 4354 . . . . . . . 8 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍))
2120elv 3437 . . . . . . 7 ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍)
2219, 21bitri 274 . . . . . 6 ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍)
2318, 22imbi12i 351 . . . . 5 (([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍) ↔ ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍))
2410, 23bitri 274 . . . 4 ([𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍) ↔ ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍))
259, 24mpbi 229 . . 3 ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍)
26 suppss2f.v . . 3 (𝜑𝐴𝑉)
2725, 26suppss2 8007 . 2 (𝜑 → ((𝑙𝐴𝑙 / 𝑘𝐵) supp 𝑍) ⊆ 𝑊)
287, 27eqsstrid 3974 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wnf 1790  [wsb 2071  wcel 2110  wnfc 2889  Vcvv 3431  [wsbc 3720  csb 3837  cdif 3889  wss 3892  cmpt 5162  (class class class)co 7271   supp csupp 7968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-supp 7969
This theorem is referenced by:  elrspunidl  31602  esumss  32036
  Copyright terms: Public domain W3C validator