Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > suppss2f | Structured version Visualization version GIF version |
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.) |
Ref | Expression |
---|---|
suppss2f.p | ⊢ Ⅎ𝑘𝜑 |
suppss2f.a | ⊢ Ⅎ𝑘𝐴 |
suppss2f.w | ⊢ Ⅎ𝑘𝑊 |
suppss2f.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
suppss2f.v | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
suppss2f | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppss2f.a | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
2 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑙𝐴 | |
3 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑙𝐵 | |
4 | nfcsb1v 3857 | . . . 4 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 | |
5 | csbeq1a 3846 | . . . 4 ⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) | |
6 | 1, 2, 3, 4, 5 | cbvmptf 5183 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
7 | 6 | oveq1i 7285 | . 2 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ((𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) supp 𝑍) |
8 | suppss2f.n | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
9 | 8 | sbt 2069 | . . . 4 ⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
10 | sbim 2300 | . . . . 5 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍)) | |
11 | sban 2083 | . . . . . . 7 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊))) | |
12 | suppss2f.p | . . . . . . . . 9 ⊢ Ⅎ𝑘𝜑 | |
13 | 12 | sbf 2263 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
14 | suppss2f.w | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑊 | |
15 | 1, 14 | nfdif 4060 | . . . . . . . . 9 ⊢ Ⅎ𝑘(𝐴 ∖ 𝑊) |
16 | 15 | clelsb1fw 2911 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑙 ∈ (𝐴 ∖ 𝑊)) |
17 | 13, 16 | anbi12i 627 | . . . . . . 7 ⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ (𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊))) |
18 | 11, 17 | bitri 274 | . . . . . 6 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ (𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊))) |
19 | sbsbc 3720 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ [𝑙 / 𝑘]𝐵 = 𝑍) | |
20 | sbceq1g 4348 | . . . . . . . 8 ⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) | |
21 | 20 | elv 3438 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
22 | 19, 21 | bitri 274 | . . . . . 6 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
23 | 18, 22 | imbi12i 351 | . . . . 5 ⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍) ↔ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) |
24 | 10, 23 | bitri 274 | . . . 4 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) ↔ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) |
25 | 9, 24 | mpbi 229 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
26 | suppss2f.v | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
27 | 25, 26 | suppss2 8016 | . 2 ⊢ (𝜑 → ((𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) supp 𝑍) ⊆ 𝑊) |
28 | 7, 27 | eqsstrid 3969 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 [wsb 2067 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 [wsbc 3716 ⦋csb 3832 ∖ cdif 3884 ⊆ wss 3887 ↦ cmpt 5157 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: elrspunidl 31606 esumss 32040 |
Copyright terms: Public domain | W3C validator |