| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suppss2f | Structured version Visualization version GIF version | ||
| Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.) |
| Ref | Expression |
|---|---|
| suppss2f.p | ⊢ Ⅎ𝑘𝜑 |
| suppss2f.a | ⊢ Ⅎ𝑘𝐴 |
| suppss2f.w | ⊢ Ⅎ𝑘𝑊 |
| suppss2f.n | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
| suppss2f.v | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| suppss2f | ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss2f.a | . . . 4 ⊢ Ⅎ𝑘𝐴 | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑙𝐴 | |
| 3 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑙𝐵 | |
| 4 | nfcsb1v 3874 | . . . 4 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐵 | |
| 5 | csbeq1a 3864 | . . . 4 ⊢ (𝑘 = 𝑙 → 𝐵 = ⦋𝑙 / 𝑘⦌𝐵) | |
| 6 | 1, 2, 3, 4, 5 | cbvmptf 5191 | . . 3 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) |
| 7 | 6 | oveq1i 7356 | . 2 ⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) = ((𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) supp 𝑍) |
| 8 | suppss2f.n | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) | |
| 9 | 8 | sbt 2069 | . . . 4 ⊢ [𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) |
| 10 | sbim 2305 | . . . . 5 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) ↔ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍)) | |
| 11 | sban 2083 | . . . . . . 7 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊))) | |
| 12 | suppss2f.p | . . . . . . . . 9 ⊢ Ⅎ𝑘𝜑 | |
| 13 | 12 | sbf 2273 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝜑 ↔ 𝜑) |
| 14 | suppss2f.w | . . . . . . . . . 10 ⊢ Ⅎ𝑘𝑊 | |
| 15 | 1, 14 | nfdif 4079 | . . . . . . . . 9 ⊢ Ⅎ𝑘(𝐴 ∖ 𝑊) |
| 16 | 15 | clelsb1fw 2898 | . . . . . . . 8 ⊢ ([𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊) ↔ 𝑙 ∈ (𝐴 ∖ 𝑊)) |
| 17 | 13, 16 | anbi12i 628 | . . . . . . 7 ⊢ (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ (𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊))) |
| 18 | 11, 17 | bitri 275 | . . . . . 6 ⊢ ([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) ↔ (𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊))) |
| 19 | sbsbc 3745 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ [𝑙 / 𝑘]𝐵 = 𝑍) | |
| 20 | sbceq1g 4367 | . . . . . . . 8 ⊢ (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) | |
| 21 | 20 | elv 3441 | . . . . . . 7 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
| 22 | 19, 21 | bitri 275 | . . . . . 6 ⊢ ([𝑙 / 𝑘]𝐵 = 𝑍 ↔ ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
| 23 | 18, 22 | imbi12i 350 | . . . . 5 ⊢ (([𝑙 / 𝑘](𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍) ↔ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) |
| 24 | 10, 23 | bitri 275 | . . . 4 ⊢ ([𝑙 / 𝑘]((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ 𝑊)) → 𝐵 = 𝑍) ↔ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍)) |
| 25 | 9, 24 | mpbi 230 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ (𝐴 ∖ 𝑊)) → ⦋𝑙 / 𝑘⦌𝐵 = 𝑍) |
| 26 | suppss2f.v | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 27 | 25, 26 | suppss2 8130 | . 2 ⊢ (𝜑 → ((𝑙 ∈ 𝐴 ↦ ⦋𝑙 / 𝑘⦌𝐵) supp 𝑍) ⊆ 𝑊) |
| 28 | 7, 27 | eqsstrid 3973 | 1 ⊢ (𝜑 → ((𝑘 ∈ 𝐴 ↦ 𝐵) supp 𝑍) ⊆ 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 [wsb 2067 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 [wsbc 3741 ⦋csb 3850 ∖ cdif 3899 ⊆ wss 3902 ↦ cmpt 5172 (class class class)co 7346 supp csupp 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-supp 8091 |
| This theorem is referenced by: elrspunidl 33391 esumss 34083 |
| Copyright terms: Public domain | W3C validator |