Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss2f Structured version   Visualization version   GIF version

Theorem suppss2f 32287
Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.)
Hypotheses
Ref Expression
suppss2f.p 𝑘𝜑
suppss2f.a 𝑘𝐴
suppss2f.w 𝑘𝑊
suppss2f.n ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
suppss2f.v (𝜑𝐴𝑉)
Assertion
Ref Expression
suppss2f (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem suppss2f
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 suppss2f.a . . . 4 𝑘𝐴
2 nfcv 2895 . . . 4 𝑙𝐴
3 nfcv 2895 . . . 4 𝑙𝐵
4 nfcsb1v 3910 . . . 4 𝑘𝑙 / 𝑘𝐵
5 csbeq1a 3899 . . . 4 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
61, 2, 3, 4, 5cbvmptf 5247 . . 3 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
76oveq1i 7411 . 2 ((𝑘𝐴𝐵) supp 𝑍) = ((𝑙𝐴𝑙 / 𝑘𝐵) supp 𝑍)
8 suppss2f.n . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
98sbt 2061 . . . 4 [𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
10 sbim 2291 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍) ↔ ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍))
11 sban 2075 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊)))
12 suppss2f.p . . . . . . . . 9 𝑘𝜑
1312sbf 2254 . . . . . . . 8 ([𝑙 / 𝑘]𝜑𝜑)
14 suppss2f.w . . . . . . . . . 10 𝑘𝑊
151, 14nfdif 4117 . . . . . . . . 9 𝑘(𝐴𝑊)
1615clelsb1fw 2899 . . . . . . . 8 ([𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊) ↔ 𝑙 ∈ (𝐴𝑊))
1713, 16anbi12i 626 . . . . . . 7 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊)) ↔ (𝜑𝑙 ∈ (𝐴𝑊)))
1811, 17bitri 275 . . . . . 6 ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) ↔ (𝜑𝑙 ∈ (𝐴𝑊)))
19 sbsbc 3773 . . . . . . 7 ([𝑙 / 𝑘]𝐵 = 𝑍[𝑙 / 𝑘]𝐵 = 𝑍)
20 sbceq1g 4406 . . . . . . . 8 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍))
2120elv 3472 . . . . . . 7 ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍)
2219, 21bitri 275 . . . . . 6 ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍)
2318, 22imbi12i 350 . . . . 5 (([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍) ↔ ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍))
2410, 23bitri 275 . . . 4 ([𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍) ↔ ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍))
259, 24mpbi 229 . . 3 ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍)
26 suppss2f.v . . 3 (𝜑𝐴𝑉)
2725, 26suppss2 8180 . 2 (𝜑 → ((𝑙𝐴𝑙 / 𝑘𝐵) supp 𝑍) ⊆ 𝑊)
287, 27eqsstrid 4022 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wnf 1777  [wsb 2059  wcel 2098  wnfc 2875  Vcvv 3466  [wsbc 3769  csb 3885  cdif 3937  wss 3940  cmpt 5221  (class class class)co 7401   supp csupp 8140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-supp 8141
This theorem is referenced by:  elrspunidl  32977  esumss  33525
  Copyright terms: Public domain W3C validator