Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suppss2f Structured version   Visualization version   GIF version

Theorem suppss2f 30401
 Description: Show that the support of a function is contained in a set. (Contributed by Thierry Arnoux, 22-Jun-2017.) (Revised by AV, 1-Sep-2020.)
Hypotheses
Ref Expression
suppss2f.p 𝑘𝜑
suppss2f.a 𝑘𝐴
suppss2f.w 𝑘𝑊
suppss2f.n ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
suppss2f.v (𝜑𝐴𝑉)
Assertion
Ref Expression
suppss2f (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
Distinct variable group:   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem suppss2f
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 suppss2f.a . . . 4 𝑘𝐴
2 nfcv 2958 . . . 4 𝑙𝐴
3 nfcv 2958 . . . 4 𝑙𝐵
4 nfcsb1v 3855 . . . 4 𝑘𝑙 / 𝑘𝐵
5 csbeq1a 3845 . . . 4 (𝑘 = 𝑙𝐵 = 𝑙 / 𝑘𝐵)
61, 2, 3, 4, 5cbvmptf 5132 . . 3 (𝑘𝐴𝐵) = (𝑙𝐴𝑙 / 𝑘𝐵)
76oveq1i 7149 . 2 ((𝑘𝐴𝐵) supp 𝑍) = ((𝑙𝐴𝑙 / 𝑘𝐵) supp 𝑍)
8 suppss2f.n . . . . 5 ((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
98sbt 2071 . . . 4 [𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍)
10 sbim 2309 . . . . 5 ([𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍) ↔ ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍))
11 sban 2085 . . . . . . 7 ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) ↔ ([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊)))
12 suppss2f.p . . . . . . . . 9 𝑘𝜑
1312sbf 2270 . . . . . . . 8 ([𝑙 / 𝑘]𝜑𝜑)
14 suppss2f.w . . . . . . . . . 10 𝑘𝑊
151, 14nfdif 4056 . . . . . . . . 9 𝑘(𝐴𝑊)
1615clelsb3fw 2962 . . . . . . . 8 ([𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊) ↔ 𝑙 ∈ (𝐴𝑊))
1713, 16anbi12i 629 . . . . . . 7 (([𝑙 / 𝑘]𝜑 ∧ [𝑙 / 𝑘]𝑘 ∈ (𝐴𝑊)) ↔ (𝜑𝑙 ∈ (𝐴𝑊)))
1811, 17bitri 278 . . . . . 6 ([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) ↔ (𝜑𝑙 ∈ (𝐴𝑊)))
19 sbsbc 3727 . . . . . . 7 ([𝑙 / 𝑘]𝐵 = 𝑍[𝑙 / 𝑘]𝐵 = 𝑍)
20 sbceq1g 4325 . . . . . . . 8 (𝑙 ∈ V → ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍))
2120elv 3449 . . . . . . 7 ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍)
2219, 21bitri 278 . . . . . 6 ([𝑙 / 𝑘]𝐵 = 𝑍𝑙 / 𝑘𝐵 = 𝑍)
2318, 22imbi12i 354 . . . . 5 (([𝑙 / 𝑘](𝜑𝑘 ∈ (𝐴𝑊)) → [𝑙 / 𝑘]𝐵 = 𝑍) ↔ ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍))
2410, 23bitri 278 . . . 4 ([𝑙 / 𝑘]((𝜑𝑘 ∈ (𝐴𝑊)) → 𝐵 = 𝑍) ↔ ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍))
259, 24mpbi 233 . . 3 ((𝜑𝑙 ∈ (𝐴𝑊)) → 𝑙 / 𝑘𝐵 = 𝑍)
26 suppss2f.v . . 3 (𝜑𝐴𝑉)
2725, 26suppss2 7851 . 2 (𝜑 → ((𝑙𝐴𝑙 / 𝑘𝐵) supp 𝑍) ⊆ 𝑊)
287, 27eqsstrid 3966 1 (𝜑 → ((𝑘𝐴𝐵) supp 𝑍) ⊆ 𝑊)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  Ⅎwnf 1785  [wsb 2069   ∈ wcel 2112  Ⅎwnfc 2939  Vcvv 3444  [wsbc 3723  ⦋csb 3831   ∖ cdif 3881   ⊆ wss 3884   ↦ cmpt 5113  (class class class)co 7139   supp csupp 7817 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-supp 7818 This theorem is referenced by:  elrspunidl  31017  esumss  31439
 Copyright terms: Public domain W3C validator