MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexg Structured version   Visualization version   GIF version

Theorem abrexexg 7964
Description: Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5265, axrep6 5263, ax-rep 5254. See also abrexex2g 7968. There are partial converses under additional conditions, see for instance abnexg 7755. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2142, ax-11 2158, ax-12 2178, ax-pr 5407, ax-un 7734 and shorten proof. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
abrexexg (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abrexexg
StepHypRef Expression
1 moeq 3695 . . 3 ∃*𝑦 𝑦 = 𝐵
21ax-gen 1795 . 2 𝑥∃*𝑦 𝑦 = 𝐵
3 axrep6g 5265 . 2 ((𝐴𝑉 ∧ ∀𝑥∃*𝑦 𝑦 = 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
42, 3mpan2 691 1 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2538  {cab 2714  wrex 3061  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-rep 5254
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-mo 2540  df-clab 2715  df-cleq 2728  df-clel 2810  df-rex 3062  df-v 3466
This theorem is referenced by:  abrexex  7966  iunexg  7967  qsexg  8794  wdomd  9600  cardiun  10001  rankcf  10796  sigaclci  34168  satf0suclem  35402  hbtlem1  43114  hbtlem7  43116  setpreimafvex  47364  fundcmpsurinj  47390  fundcmpsurbijinj  47391
  Copyright terms: Public domain W3C validator