![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abrexexg | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5296, axrep6 5294, ax-rep 5285. See also abrexex2g 7988. There are partial converses under additional conditions, see for instance abnexg 7775. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2139, ax-11 2155, ax-12 2175, ax-pr 5438, ax-un 7754 and shorten proof. (Revised by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
abrexexg | ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3716 | . . 3 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
2 | 1 | ax-gen 1792 | . 2 ⊢ ∀𝑥∃*𝑦 𝑦 = 𝐵 |
3 | axrep6g 5296 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦 𝑦 = 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
4 | 2, 3 | mpan2 691 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∃*wmo 2536 {cab 2712 ∃wrex 3068 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-rep 5285 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-v 3480 |
This theorem is referenced by: abrexex 7986 iunexg 7987 qsexg 8814 wdomd 9619 cardiun 10020 rankcf 10815 sigaclci 34113 satf0suclem 35360 hbtlem1 43112 hbtlem7 43114 setpreimafvex 47308 fundcmpsurinj 47334 fundcmpsurbijinj 47335 |
Copyright terms: Public domain | W3C validator |