MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexg Structured version   Visualization version   GIF version

Theorem abrexexg 7899
Description: Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5230, axrep6 5228, ax-rep 5219. See also abrexex2g 7902. There are partial converses under additional conditions, see for instance abnexg 7695. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2146, ax-11 2162, ax-12 2182, ax-pr 5372, ax-un 7674 and shorten proof. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
abrexexg (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abrexexg
StepHypRef Expression
1 moeq 3662 . . 3 ∃*𝑦 𝑦 = 𝐵
21ax-gen 1796 . 2 𝑥∃*𝑦 𝑦 = 𝐵
3 axrep6g 5230 . 2 ((𝐴𝑉 ∧ ∀𝑥∃*𝑦 𝑦 = 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
42, 3mpan2 691 1 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539   = wceq 1541  wcel 2113  ∃*wmo 2535  {cab 2711  wrex 3057  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-rep 5219
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-v 3439
This theorem is referenced by:  abrexex  7900  iunexg  7901  qsexg  8702  wdomd  9474  cardiun  9882  rankcf  10675  sigaclci  34166  satf0suclem  35440  hbtlem1  43240  hbtlem7  43242  setpreimafvex  47507  fundcmpsurinj  47533  fundcmpsurbijinj  47534
  Copyright terms: Public domain W3C validator