MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abrexexg Structured version   Visualization version   GIF version

Theorem abrexexg 8001
Description: Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5311, axrep6 5310, ax-rep 5303. See also abrexex2g 8005. There are partial converses under additional conditions, see for instance abnexg 7791. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2141, ax-11 2158, ax-12 2178, ax-pr 5447, ax-un 7770 and shorten proof. (Revised by SN, 11-Dec-2024.)
Assertion
Ref Expression
abrexexg (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem abrexexg
StepHypRef Expression
1 moeq 3729 . . 3 ∃*𝑦 𝑦 = 𝐵
21ax-gen 1793 . 2 𝑥∃*𝑦 𝑦 = 𝐵
3 axrep6g 5311 . 2 ((𝐴𝑉 ∧ ∀𝑥∃*𝑦 𝑦 = 𝐵) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
42, 3mpan2 690 1 (𝐴𝑉 → {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  wcel 2108  ∃*wmo 2541  {cab 2717  wrex 3076  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-rep 5303
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-rex 3077  df-v 3490
This theorem is referenced by:  abrexex  8003  iunexg  8004  qsexg  8833  wdomd  9650  cardiun  10051  rankcf  10846  sigaclci  34096  satf0suclem  35343  hbtlem1  43080  hbtlem7  43082  setpreimafvex  47257  fundcmpsurinj  47283  fundcmpsurbijinj  47284
  Copyright terms: Public domain W3C validator