Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abrexexg | Structured version Visualization version GIF version |
Description: Existence of a class abstraction of existentially restricted sets. The class 𝐵 can be thought of as an expression in 𝑥 (which is typically a free variable in the class expression substituted for 𝐵) and the class abstraction appearing in the statement as the class of values 𝐵 as 𝑥 varies through 𝐴. If the "domain" 𝐴 is a set, then the abstraction is also a set. Therefore, this statement is a kind of Replacement. This can be seen by tracing back through the path axrep6g 5217, axrep6 5216, ax-rep 5209. See also abrexex2g 7807. There are partial converses under additional conditions, see for instance abnexg 7606. (Contributed by NM, 3-Nov-2003.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2137, ax-11 2154, ax-12 2171, ax-pr 5352, ax-un 7588 and shorten proof. (Revised by SN, 11-Dec-2024.) |
Ref | Expression |
---|---|
abrexexg | ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3642 | . . 3 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥∃*𝑦 𝑦 = 𝐵 |
3 | axrep6g 5217 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥∃*𝑦 𝑦 = 𝐵) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
4 | 2, 3 | mpan2 688 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∃*wmo 2538 {cab 2715 ∃wrex 3065 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-rep 5209 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 |
This theorem is referenced by: abrexex 7805 iunexg 7806 qsexg 8564 wdomd 9340 cardiun 9740 rankcf 10533 sigaclci 32100 satf0suclem 33337 hbtlem1 40948 hbtlem7 40950 setpreimafvex 44835 fundcmpsurinj 44861 fundcmpsurbijinj 44862 |
Copyright terms: Public domain | W3C validator |