| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaprimaeqfv | Structured version Visualization version GIF version | ||
| Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
| Ref | Expression |
|---|---|
| uniimaprimaeqfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn3 6747 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴⟶ran 𝐹) |
| 4 | cnvimass 6099 | . . . . 5 ⊢ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ dom 𝐹 | |
| 5 | fndm 6670 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 4, 5 | sseqtrid 4025 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
| 8 | preimafvsnel 47371 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | |
| 9 | 3, 7, 8 | 3jca 1128 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}))) |
| 10 | fniniseg 7079 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)) → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 13 | 11, 12 | biimtrdi 253 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) → (𝐹‘𝑥) = (𝐹‘𝑋))) |
| 14 | 13 | ralrimiv 3144 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋)) |
| 15 | uniimafveqt 47373 | . 2 ⊢ ((𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) → (∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋))) | |
| 16 | 9, 14, 15 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 {csn 4625 ∪ cuni 4906 ◡ccnv 5683 dom cdm 5684 ran crn 5685 “ cima 5687 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 |
| This theorem is referenced by: imasetpreimafvbijlemfo 47397 fundcmpsurbijinjpreimafv 47399 |
| Copyright terms: Public domain | W3C validator |