Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaprimaeqfv Structured version   Visualization version   GIF version

Theorem uniimaprimaeqfv 47374
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.)
Assertion
Ref Expression
uniimaprimaeqfv ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))

Proof of Theorem uniimaprimaeqfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6747 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
21biimpi 216 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹:𝐴⟶ran 𝐹)
4 cnvimass 6099 . . . . 5 (𝐹 “ {(𝐹𝑋)}) ⊆ dom 𝐹
5 fndm 6670 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
64, 5sseqtrid 4025 . . . 4 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
76adantr 480 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
8 preimafvsnel 47371 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
93, 7, 83jca 1128 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})))
10 fniniseg 7079 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
1110adantr 480 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
12 simpr 484 . . . 4 ((𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑥) = (𝐹𝑋))
1311, 12biimtrdi 253 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) → (𝐹𝑥) = (𝐹𝑋)))
1413ralrimiv 3144 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → ∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋))
15 uniimafveqt 47373 . 2 ((𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})) → (∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋)))
169, 14, 15sylc 65 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  wss 3950  {csn 4625   cuni 4906  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687   Fn wfn 6555  wf 6556  cfv 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568
This theorem is referenced by:  imasetpreimafvbijlemfo  47397  fundcmpsurbijinjpreimafv  47399
  Copyright terms: Public domain W3C validator