Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaprimaeqfv Structured version   Visualization version   GIF version

Theorem uniimaprimaeqfv 47307
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.)
Assertion
Ref Expression
uniimaprimaeqfv ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))

Proof of Theorem uniimaprimaeqfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6749 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
21biimpi 216 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹:𝐴⟶ran 𝐹)
4 cnvimass 6102 . . . . 5 (𝐹 “ {(𝐹𝑋)}) ⊆ dom 𝐹
5 fndm 6672 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
64, 5sseqtrid 4048 . . . 4 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
76adantr 480 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
8 preimafvsnel 47304 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
93, 7, 83jca 1127 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})))
10 fniniseg 7080 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
1110adantr 480 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
12 simpr 484 . . . 4 ((𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑥) = (𝐹𝑋))
1311, 12biimtrdi 253 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) → (𝐹𝑥) = (𝐹𝑋)))
1413ralrimiv 3143 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → ∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋))
15 uniimafveqt 47306 . 2 ((𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})) → (∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋)))
169, 14, 15sylc 65 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  {csn 4631   cuni 4912  ccnv 5688  dom cdm 5689  ran crn 5690  cima 5692   Fn wfn 6558  wf 6559  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  imasetpreimafvbijlemfo  47330  fundcmpsurbijinjpreimafv  47332
  Copyright terms: Public domain W3C validator