![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaprimaeqfv | Structured version Visualization version GIF version |
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
Ref | Expression |
---|---|
uniimaprimaeqfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn3 6717 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴⟶ran 𝐹) |
4 | cnvimass 6069 | . . . . 5 ⊢ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ dom 𝐹 | |
5 | fndm 6641 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | sseqtrid 4030 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
8 | preimafvsnel 45817 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | |
9 | 3, 7, 8 | 3jca 1128 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}))) |
10 | fniniseg 7046 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) | |
11 | 10 | adantr 481 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) |
12 | simpr 485 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)) → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
13 | 11, 12 | syl6bi 252 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) → (𝐹‘𝑥) = (𝐹‘𝑋))) |
14 | 13 | ralrimiv 3144 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋)) |
15 | uniimafveqt 45819 | . 2 ⊢ ((𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) → (∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋))) | |
16 | 9, 14, 15 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ⊆ wss 3944 {csn 4622 ∪ cuni 4901 ◡ccnv 5668 dom cdm 5669 ran crn 5670 “ cima 5672 Fn wfn 6527 ⟶wf 6528 ‘cfv 6532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-fv 6540 |
This theorem is referenced by: imasetpreimafvbijlemfo 45843 fundcmpsurbijinjpreimafv 45845 |
Copyright terms: Public domain | W3C validator |