Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaprimaeqfv Structured version   Visualization version   GIF version

Theorem uniimaprimaeqfv 47376
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.)
Assertion
Ref Expression
uniimaprimaeqfv ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))

Proof of Theorem uniimaprimaeqfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6723 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
21biimpi 216 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
32adantr 480 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹:𝐴⟶ran 𝐹)
4 cnvimass 6074 . . . . 5 (𝐹 “ {(𝐹𝑋)}) ⊆ dom 𝐹
5 fndm 6646 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
64, 5sseqtrid 4006 . . . 4 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
76adantr 480 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
8 preimafvsnel 47373 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
93, 7, 83jca 1128 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})))
10 fniniseg 7055 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
1110adantr 480 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
12 simpr 484 . . . 4 ((𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑥) = (𝐹𝑋))
1311, 12biimtrdi 253 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) → (𝐹𝑥) = (𝐹𝑋)))
1413ralrimiv 3132 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → ∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋))
15 uniimafveqt 47375 . 2 ((𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})) → (∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋)))
169, 14, 15sylc 65 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931  {csn 4606   cuni 4888  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662   Fn wfn 6531  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  imasetpreimafvbijlemfo  47399  fundcmpsurbijinjpreimafv  47401
  Copyright terms: Public domain W3C validator