Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaprimaeqfv | Structured version Visualization version GIF version |
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
Ref | Expression |
---|---|
uniimaprimaeqfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn3 6597 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴⟶ran 𝐹) |
4 | cnvimass 5978 | . . . . 5 ⊢ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ dom 𝐹 | |
5 | fndm 6520 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | sseqtrid 3969 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
8 | preimafvsnel 44719 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | |
9 | 3, 7, 8 | 3jca 1126 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}))) |
10 | fniniseg 6919 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) |
12 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)) → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
13 | 11, 12 | syl6bi 252 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) → (𝐹‘𝑥) = (𝐹‘𝑋))) |
14 | 13 | ralrimiv 3106 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋)) |
15 | uniimafveqt 44721 | . 2 ⊢ ((𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) → (∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋))) | |
16 | 9, 14, 15 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 ◡ccnv 5579 dom cdm 5580 ran crn 5581 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: imasetpreimafvbijlemfo 44745 fundcmpsurbijinjpreimafv 44747 |
Copyright terms: Public domain | W3C validator |