Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uniimaprimaeqfv Structured version   Visualization version   GIF version

Theorem uniimaprimaeqfv 44834
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.)
Assertion
Ref Expression
uniimaprimaeqfv ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))

Proof of Theorem uniimaprimaeqfv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dffn3 6613 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
21biimpi 215 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
32adantr 481 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝐹:𝐴⟶ran 𝐹)
4 cnvimass 5989 . . . . 5 (𝐹 “ {(𝐹𝑋)}) ⊆ dom 𝐹
5 fndm 6536 . . . . 5 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
64, 5sseqtrid 3973 . . . 4 (𝐹 Fn 𝐴 → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
76adantr 481 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴)
8 preimafvsnel 44831 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑋 ∈ (𝐹 “ {(𝐹𝑋)}))
93, 7, 83jca 1127 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})))
10 fniniseg 6937 . . . . 5 (𝐹 Fn 𝐴 → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
1110adantr 481 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) ↔ (𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋))))
12 simpr 485 . . . 4 ((𝑥𝐴 ∧ (𝐹𝑥) = (𝐹𝑋)) → (𝐹𝑥) = (𝐹𝑋))
1311, 12syl6bi 252 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑥 ∈ (𝐹 “ {(𝐹𝑋)}) → (𝐹𝑥) = (𝐹𝑋)))
1413ralrimiv 3102 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → ∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋))
15 uniimafveqt 44833 . 2 ((𝐹:𝐴⟶ran 𝐹 ∧ (𝐹 “ {(𝐹𝑋)}) ⊆ 𝐴𝑋 ∈ (𝐹 “ {(𝐹𝑋)})) → (∀𝑥 ∈ (𝐹 “ {(𝐹𝑋)})(𝐹𝑥) = (𝐹𝑋) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋)))
169, 14, 15sylc 65 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 “ (𝐹 “ {(𝐹𝑋)})) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  {csn 4561   cuni 4839  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  imasetpreimafvbijlemfo  44857  fundcmpsurbijinjpreimafv  44859
  Copyright terms: Public domain W3C validator