![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaprimaeqfv | Structured version Visualization version GIF version |
Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
Ref | Expression |
---|---|
uniimaprimaeqfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn3 6749 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴⟶ran 𝐹) |
4 | cnvimass 6102 | . . . . 5 ⊢ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ dom 𝐹 | |
5 | fndm 6672 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | sseqtrid 4048 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
8 | preimafvsnel 47304 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | |
9 | 3, 7, 8 | 3jca 1127 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}))) |
10 | fniniseg 7080 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) | |
11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) |
12 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)) → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
13 | 11, 12 | biimtrdi 253 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) → (𝐹‘𝑥) = (𝐹‘𝑋))) |
14 | 13 | ralrimiv 3143 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋)) |
15 | uniimafveqt 47306 | . 2 ⊢ ((𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) → (∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋))) | |
16 | 9, 14, 15 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 {csn 4631 ∪ cuni 4912 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: imasetpreimafvbijlemfo 47330 fundcmpsurbijinjpreimafv 47332 |
Copyright terms: Public domain | W3C validator |