| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniimaprimaeqfv | Structured version Visualization version GIF version | ||
| Description: The union of the image of the preimage of a function value is the function value. (Contributed by AV, 12-Mar-2024.) |
| Ref | Expression |
|---|---|
| uniimaprimaeqfv | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn3 6723 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴⟶ran 𝐹) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴⟶ran 𝐹) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝐹:𝐴⟶ran 𝐹) |
| 4 | cnvimass 6074 | . . . . 5 ⊢ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ dom 𝐹 | |
| 5 | fndm 6646 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 4, 5 | sseqtrid 4006 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴) |
| 8 | preimafvsnel 47373 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) | |
| 9 | 3, 7, 8 | 3jca 1128 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)}))) |
| 10 | fniniseg 7055 | . . . . 5 ⊢ (𝐹 Fn 𝐴 → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) ↔ (𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)))) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) = (𝐹‘𝑋)) → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 13 | 11, 12 | biimtrdi 253 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)}) → (𝐹‘𝑥) = (𝐹‘𝑋))) |
| 14 | 13 | ralrimiv 3132 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋)) |
| 15 | uniimafveqt 47375 | . 2 ⊢ ((𝐹:𝐴⟶ran 𝐹 ∧ (◡𝐹 “ {(𝐹‘𝑋)}) ⊆ 𝐴 ∧ 𝑋 ∈ (◡𝐹 “ {(𝐹‘𝑋)})) → (∀𝑥 ∈ (◡𝐹 “ {(𝐹‘𝑋)})(𝐹‘𝑥) = (𝐹‘𝑋) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋))) | |
| 16 | 9, 14, 15 | sylc 65 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ∪ (𝐹 “ (◡𝐹 “ {(𝐹‘𝑋)})) = (𝐹‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 {csn 4606 ∪ cuni 4888 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 |
| This theorem is referenced by: imasetpreimafvbijlemfo 47399 fundcmpsurbijinjpreimafv 47401 |
| Copyright terms: Public domain | W3C validator |