Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3atlem5 Structured version   Visualization version   GIF version

Theorem 3atlem5 38346
Description: Lemma for 3at 38349. (Contributed by NM, 23-Jun-2012.)
Hypotheses
Ref Expression
3at.l ≀ = (leβ€˜πΎ)
3at.j ∨ = (joinβ€˜πΎ)
3at.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
3atlem5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))

Proof of Theorem 3atlem5
StepHypRef Expression
1 oveq2 7413 . . . . . 6 (π‘ˆ = 𝑃 β†’ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) = ((𝑆 ∨ 𝑇) ∨ 𝑃))
21eqcoms 2740 . . . . 5 (𝑃 = π‘ˆ β†’ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) = ((𝑆 ∨ 𝑇) ∨ 𝑃))
32breq2d 5159 . . . 4 (𝑃 = π‘ˆ β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)))
42eqeq2d 2743 . . . 4 (𝑃 = π‘ˆ β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ) ↔ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑃)))
53, 4imbi12d 344 . . 3 (𝑃 = π‘ˆ β†’ ((((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑃))))
6 simp1l 1197 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)))
7 simp1r1 1269 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
8 simp2 1137 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ 𝑃 β‰  π‘ˆ)
9 simp1r3 1271 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))
10 simp3 1138 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
11 3at.l . . . . . 6 ≀ = (leβ€˜πΎ)
12 3at.j . . . . . 6 ∨ = (joinβ€˜πΎ)
13 3at.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
1411, 12, 133atlem3 38344 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  π‘ˆ ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
156, 7, 8, 9, 10, 14syl131anc 1383 . . . 4 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
16153expia 1121 . . 3 ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) ∧ 𝑃 β‰  π‘ˆ) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)))
17 simp11 1203 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝐾 ∈ HL)
18 simp123 1307 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑅 ∈ 𝐴)
19 simp122 1306 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑄 ∈ 𝐴)
20 simp121 1305 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑃 ∈ 𝐴)
2118, 19, 203jca 1128 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴))
22 simp131 1308 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑆 ∈ 𝐴)
23 simp132 1309 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑇 ∈ 𝐴)
2422, 23jca 512 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴))
25 simp21 1206 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
26 simp22 1207 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑃 β‰  𝑄)
2711, 12, 13hlatexch2 38255 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
2817, 20, 18, 19, 26, 27syl131anc 1383 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑅 ≀ (𝑃 ∨ 𝑄)))
2925, 28mtod 197 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄))
3017hllatd 38222 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝐾 ∈ Lat)
31 eqid 2732 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3231, 13atbase 38147 . . . . . . . 8 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
3318, 32syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
3431, 13atbase 38147 . . . . . . . 8 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3520, 34syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
3631, 13atbase 38147 . . . . . . . 8 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3719, 36syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
3831, 11, 12latnlej1r 18407 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑅 β‰  𝑄)
3930, 33, 35, 37, 25, 38syl131anc 1383 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ 𝑅 β‰  𝑄)
40 simp3 1138 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃))
4111, 12, 133atlem4 38345 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) ∧ (Β¬ 𝑃 ≀ (𝑅 ∨ 𝑄) ∧ 𝑅 β‰  𝑄) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ ((𝑅 ∨ 𝑄) ∨ 𝑃) = ((𝑆 ∨ 𝑇) ∨ 𝑃))
4217, 21, 24, 29, 39, 40, 41syl321anc 1392 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)) β†’ ((𝑅 ∨ 𝑄) ∨ 𝑃) = ((𝑆 ∨ 𝑇) ∨ 𝑃))
43423expia 1121 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ (((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃) β†’ ((𝑅 ∨ 𝑄) ∨ 𝑃) = ((𝑆 ∨ 𝑇) ∨ 𝑃)))
44 simpl1 1191 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝐾 ∈ HL)
4544hllatd 38222 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝐾 ∈ Lat)
46 simpl21 1251 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝑃 ∈ 𝐴)
4746, 34syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
48 simpl22 1252 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝑄 ∈ 𝐴)
4948, 36syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
50 simpl23 1253 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝑅 ∈ 𝐴)
5150, 32syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
5231, 12latj31 18436 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑅 ∨ 𝑄) ∨ 𝑃))
5345, 47, 49, 51, 52syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑅 ∨ 𝑄) ∨ 𝑃))
5453breq1d 5157 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃) ↔ ((𝑅 ∨ 𝑄) ∨ 𝑃) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃)))
5553eqeq1d 2734 . . . 4 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑃) ↔ ((𝑅 ∨ 𝑄) ∨ 𝑃) = ((𝑆 ∨ 𝑇) ∨ 𝑃)))
5643, 54, 553imtr4d 293 . . 3 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ 𝑃) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ 𝑃)))
575, 16, 56pm2.61ne 3027 . 2 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ))) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ)))
58573impia 1117 1 (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) ∧ (Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑄 ≀ (𝑃 ∨ π‘ˆ)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ≀ ((𝑆 ∨ 𝑇) ∨ π‘ˆ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑆 ∨ 𝑇) ∨ π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  3atlem6  38347  3atlem7  38348
  Copyright terms: Public domain W3C validator