Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnle Structured version   Visualization version   GIF version

Theorem lplnle 36829
Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
lplnle.b 𝐵 = (Base‘𝐾)
lplnle.l = (le‘𝐾)
lplnle.z 0 = (0.‘𝐾)
lplnle.a 𝐴 = (Atoms‘𝐾)
lplnle.n 𝑁 = (LLines‘𝐾)
lplnle.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑃   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem lplnle
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lplnle.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnle.l . . . 4 = (le‘𝐾)
3 lplnle.z . . . 4 0 = (0.‘𝐾)
4 lplnle.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lplnle.n . . . 4 𝑁 = (LLines‘𝐾)
61, 2, 3, 4, 5llnle 36807 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑧𝑁 𝑧 𝑋)
763adantr3 1168 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑧𝑁 𝑧 𝑋)
8 simp1ll 1233 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝐾 ∈ HL)
91, 5llnbase 36798 . . . . . . 7 (𝑧𝑁𝑧𝐵)
1093ad2ant2 1131 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝐵)
11 simp1lr 1234 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑋𝐵)
12 simp3 1135 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧 𝑋)
13 simp2 1134 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑁)
14 simp1r3 1268 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ¬ 𝑋𝑁)
15 nelne2 3087 . . . . . . . 8 ((𝑧𝑁 ∧ ¬ 𝑋𝑁) → 𝑧𝑋)
1613, 14, 15syl2anc 587 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑋)
17 eqid 2801 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
182, 17pltval 17565 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑧𝑁𝑋𝐵) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
198, 13, 11, 18syl3anc 1368 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
2012, 16, 19mpbir2and 712 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧(lt‘𝐾)𝑋)
21 eqid 2801 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
22 eqid 2801 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
231, 2, 17, 21, 22, 4hlrelat3 36701 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑧𝐵𝑋𝐵) ∧ 𝑧(lt‘𝐾)𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
248, 10, 11, 20, 23syl31anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
25 simp1ll 1233 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ HL)
2625hllatd 36653 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ Lat)
27 simp21 1203 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝑁)
2827, 9syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝐵)
29 simp23 1205 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐴)
301, 4atbase 36578 . . . . . . . . . . . . 13 (𝑝𝐴𝑝𝐵)
3129, 30syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐵)
321, 21latjcl 17656 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑝𝐵) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
3326, 28, 31, 32syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
34 simp3l 1198 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝))
35 lplnle.p . . . . . . . . . . . 12 𝑃 = (LPlanes‘𝐾)
361, 22, 5, 35lplni 36821 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑧(join‘𝐾)𝑝) ∈ 𝐵𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
3725, 33, 27, 34, 36syl31anc 1370 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
38 simp3r 1199 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) 𝑋)
39 breq1 5036 . . . . . . . . . . 11 (𝑦 = (𝑧(join‘𝐾)𝑝) → (𝑦 𝑋 ↔ (𝑧(join‘𝐾)𝑝) 𝑋))
4039rspcev 3574 . . . . . . . . . 10 (((𝑧(join‘𝐾)𝑝) ∈ 𝑃 ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
4137, 38, 40syl2anc 587 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → ∃𝑦𝑃 𝑦 𝑋)
42413exp 1116 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ((𝑧𝑁𝑧 𝑋𝑝𝐴) → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
43423expd 1350 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))))
44433imp 1108 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
4544rexlimdv 3245 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋))
4624, 45mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
47463exp 1116 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋)))
4847rexlimdv 3245 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (∃𝑧𝑁 𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋))
497, 48mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16478  lecple 16567  ltcplt 17546  joincjn 17549  0.cp0 17642  Latclat 17650  ccvr 36551  Atomscatm 36552  HLchlt 36639  LLinesclln 36780  LPlanesclpl 36781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-lat 17651  df-clat 17713  df-oposet 36465  df-ol 36467  df-oml 36468  df-covers 36555  df-ats 36556  df-atl 36587  df-cvlat 36611  df-hlat 36640  df-llines 36787  df-lplanes 36788
This theorem is referenced by:  lplncvrlvol  36905
  Copyright terms: Public domain W3C validator