Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnle Structured version   Visualization version   GIF version

Theorem lplnle 36678
Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
lplnle.b 𝐵 = (Base‘𝐾)
lplnle.l = (le‘𝐾)
lplnle.z 0 = (0.‘𝐾)
lplnle.a 𝐴 = (Atoms‘𝐾)
lplnle.n 𝑁 = (LLines‘𝐾)
lplnle.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑃   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem lplnle
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lplnle.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnle.l . . . 4 = (le‘𝐾)
3 lplnle.z . . . 4 0 = (0.‘𝐾)
4 lplnle.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lplnle.n . . . 4 𝑁 = (LLines‘𝐾)
61, 2, 3, 4, 5llnle 36656 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑧𝑁 𝑧 𝑋)
763adantr3 1167 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑧𝑁 𝑧 𝑋)
8 simp1ll 1232 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝐾 ∈ HL)
91, 5llnbase 36647 . . . . . . 7 (𝑧𝑁𝑧𝐵)
1093ad2ant2 1130 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝐵)
11 simp1lr 1233 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑋𝐵)
12 simp3 1134 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧 𝑋)
13 simp2 1133 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑁)
14 simp1r3 1267 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ¬ 𝑋𝑁)
15 nelne2 3117 . . . . . . . 8 ((𝑧𝑁 ∧ ¬ 𝑋𝑁) → 𝑧𝑋)
1613, 14, 15syl2anc 586 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑋)
17 eqid 2823 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
182, 17pltval 17572 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑧𝑁𝑋𝐵) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
198, 13, 11, 18syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
2012, 16, 19mpbir2and 711 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧(lt‘𝐾)𝑋)
21 eqid 2823 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
22 eqid 2823 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
231, 2, 17, 21, 22, 4hlrelat3 36550 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑧𝐵𝑋𝐵) ∧ 𝑧(lt‘𝐾)𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
248, 10, 11, 20, 23syl31anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
25 simp1ll 1232 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ HL)
2625hllatd 36502 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ Lat)
27 simp21 1202 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝑁)
2827, 9syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝐵)
29 simp23 1204 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐴)
301, 4atbase 36427 . . . . . . . . . . . . 13 (𝑝𝐴𝑝𝐵)
3129, 30syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐵)
321, 21latjcl 17663 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑝𝐵) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
3326, 28, 31, 32syl3anc 1367 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
34 simp3l 1197 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝))
35 lplnle.p . . . . . . . . . . . 12 𝑃 = (LPlanes‘𝐾)
361, 22, 5, 35lplni 36670 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑧(join‘𝐾)𝑝) ∈ 𝐵𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
3725, 33, 27, 34, 36syl31anc 1369 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
38 simp3r 1198 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) 𝑋)
39 breq1 5071 . . . . . . . . . . 11 (𝑦 = (𝑧(join‘𝐾)𝑝) → (𝑦 𝑋 ↔ (𝑧(join‘𝐾)𝑝) 𝑋))
4039rspcev 3625 . . . . . . . . . 10 (((𝑧(join‘𝐾)𝑝) ∈ 𝑃 ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
4137, 38, 40syl2anc 586 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → ∃𝑦𝑃 𝑦 𝑋)
42413exp 1115 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ((𝑧𝑁𝑧 𝑋𝑝𝐴) → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
43423expd 1349 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))))
44433imp 1107 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
4544rexlimdv 3285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋))
4624, 45mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
47463exp 1115 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋)))
4847rexlimdv 3285 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (∃𝑧𝑁 𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋))
497, 48mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  ltcplt 17553  joincjn 17556  0.cp0 17649  Latclat 17657  ccvr 36400  Atomscatm 36401  HLchlt 36488  LLinesclln 36629  LPlanesclpl 36630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489  df-llines 36636  df-lplanes 36637
This theorem is referenced by:  lplncvrlvol  36754
  Copyright terms: Public domain W3C validator