Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnle Structured version   Visualization version   GIF version

Theorem lplnle 39585
Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
lplnle.b 𝐵 = (Base‘𝐾)
lplnle.l = (le‘𝐾)
lplnle.z 0 = (0.‘𝐾)
lplnle.a 𝐴 = (Atoms‘𝐾)
lplnle.n 𝑁 = (LLines‘𝐾)
lplnle.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑃   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem lplnle
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lplnle.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnle.l . . . 4 = (le‘𝐾)
3 lplnle.z . . . 4 0 = (0.‘𝐾)
4 lplnle.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lplnle.n . . . 4 𝑁 = (LLines‘𝐾)
61, 2, 3, 4, 5llnle 39563 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑧𝑁 𝑧 𝑋)
763adantr3 1172 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑧𝑁 𝑧 𝑋)
8 simp1ll 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝐾 ∈ HL)
91, 5llnbase 39554 . . . . . . 7 (𝑧𝑁𝑧𝐵)
1093ad2ant2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝐵)
11 simp1lr 1238 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑋𝐵)
12 simp3 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧 𝑋)
13 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑁)
14 simp1r3 1272 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ¬ 𝑋𝑁)
15 nelne2 3026 . . . . . . . 8 ((𝑧𝑁 ∧ ¬ 𝑋𝑁) → 𝑧𝑋)
1613, 14, 15syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑋)
17 eqid 2731 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
182, 17pltval 18236 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑧𝑁𝑋𝐵) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
198, 13, 11, 18syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
2012, 16, 19mpbir2and 713 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧(lt‘𝐾)𝑋)
21 eqid 2731 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
22 eqid 2731 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
231, 2, 17, 21, 22, 4hlrelat3 39457 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑧𝐵𝑋𝐵) ∧ 𝑧(lt‘𝐾)𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
248, 10, 11, 20, 23syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
25 simp1ll 1237 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ HL)
2625hllatd 39409 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ Lat)
27 simp21 1207 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝑁)
2827, 9syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝐵)
29 simp23 1209 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐴)
301, 4atbase 39334 . . . . . . . . . . . . 13 (𝑝𝐴𝑝𝐵)
3129, 30syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐵)
321, 21latjcl 18345 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑝𝐵) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
3326, 28, 31, 32syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
34 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝))
35 lplnle.p . . . . . . . . . . . 12 𝑃 = (LPlanes‘𝐾)
361, 22, 5, 35lplni 39577 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑧(join‘𝐾)𝑝) ∈ 𝐵𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
3725, 33, 27, 34, 36syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
38 simp3r 1203 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) 𝑋)
39 breq1 5094 . . . . . . . . . . 11 (𝑦 = (𝑧(join‘𝐾)𝑝) → (𝑦 𝑋 ↔ (𝑧(join‘𝐾)𝑝) 𝑋))
4039rspcev 3577 . . . . . . . . . 10 (((𝑧(join‘𝐾)𝑝) ∈ 𝑃 ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
4137, 38, 40syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → ∃𝑦𝑃 𝑦 𝑋)
42413exp 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ((𝑧𝑁𝑧 𝑋𝑝𝐴) → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
43423expd 1354 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))))
44433imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
4544rexlimdv 3131 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋))
4624, 45mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
47463exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋)))
4847rexlimdv 3131 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (∃𝑧𝑁 𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋))
497, 48mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  ltcplt 18214  joincjn 18217  0.cp0 18327  Latclat 18337  ccvr 39307  Atomscatm 39308  HLchlt 39395  LLinesclln 39536  LPlanesclpl 39537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544
This theorem is referenced by:  lplncvrlvol  39661
  Copyright terms: Public domain W3C validator