Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnle Structured version   Visualization version   GIF version

Theorem lplnle 39534
Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
lplnle.b 𝐵 = (Base‘𝐾)
lplnle.l = (le‘𝐾)
lplnle.z 0 = (0.‘𝐾)
lplnle.a 𝐴 = (Atoms‘𝐾)
lplnle.n 𝑁 = (LLines‘𝐾)
lplnle.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑃   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem lplnle
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lplnle.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnle.l . . . 4 = (le‘𝐾)
3 lplnle.z . . . 4 0 = (0.‘𝐾)
4 lplnle.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lplnle.n . . . 4 𝑁 = (LLines‘𝐾)
61, 2, 3, 4, 5llnle 39512 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑧𝑁 𝑧 𝑋)
763adantr3 1172 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑧𝑁 𝑧 𝑋)
8 simp1ll 1237 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝐾 ∈ HL)
91, 5llnbase 39503 . . . . . . 7 (𝑧𝑁𝑧𝐵)
1093ad2ant2 1134 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝐵)
11 simp1lr 1238 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑋𝐵)
12 simp3 1138 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧 𝑋)
13 simp2 1137 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑁)
14 simp1r3 1272 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ¬ 𝑋𝑁)
15 nelne2 3023 . . . . . . . 8 ((𝑧𝑁 ∧ ¬ 𝑋𝑁) → 𝑧𝑋)
1613, 14, 15syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑋)
17 eqid 2729 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
182, 17pltval 18291 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑧𝑁𝑋𝐵) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
198, 13, 11, 18syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
2012, 16, 19mpbir2and 713 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧(lt‘𝐾)𝑋)
21 eqid 2729 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
22 eqid 2729 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
231, 2, 17, 21, 22, 4hlrelat3 39406 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑧𝐵𝑋𝐵) ∧ 𝑧(lt‘𝐾)𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
248, 10, 11, 20, 23syl31anc 1375 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
25 simp1ll 1237 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ HL)
2625hllatd 39357 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ Lat)
27 simp21 1207 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝑁)
2827, 9syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝐵)
29 simp23 1209 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐴)
301, 4atbase 39282 . . . . . . . . . . . . 13 (𝑝𝐴𝑝𝐵)
3129, 30syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐵)
321, 21latjcl 18398 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑝𝐵) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
3326, 28, 31, 32syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
34 simp3l 1202 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝))
35 lplnle.p . . . . . . . . . . . 12 𝑃 = (LPlanes‘𝐾)
361, 22, 5, 35lplni 39526 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑧(join‘𝐾)𝑝) ∈ 𝐵𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
3725, 33, 27, 34, 36syl31anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
38 simp3r 1203 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) 𝑋)
39 breq1 5110 . . . . . . . . . . 11 (𝑦 = (𝑧(join‘𝐾)𝑝) → (𝑦 𝑋 ↔ (𝑧(join‘𝐾)𝑝) 𝑋))
4039rspcev 3588 . . . . . . . . . 10 (((𝑧(join‘𝐾)𝑝) ∈ 𝑃 ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
4137, 38, 40syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → ∃𝑦𝑃 𝑦 𝑋)
42413exp 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ((𝑧𝑁𝑧 𝑋𝑝𝐴) → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
43423expd 1354 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))))
44433imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
4544rexlimdv 3132 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋))
4624, 45mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
47463exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋)))
4847rexlimdv 3132 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (∃𝑧𝑁 𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋))
497, 48mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  ltcplt 18269  joincjn 18272  0.cp0 18382  Latclat 18390  ccvr 39255  Atomscatm 39256  HLchlt 39343  LLinesclln 39485  LPlanesclpl 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493
This theorem is referenced by:  lplncvrlvol  39610
  Copyright terms: Public domain W3C validator