Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnle Structured version   Visualization version   GIF version

Theorem lplnle 37554
Description: Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.)
Hypotheses
Ref Expression
lplnle.b 𝐵 = (Base‘𝐾)
lplnle.l = (le‘𝐾)
lplnle.z 0 = (0.‘𝐾)
lplnle.a 𝐴 = (Atoms‘𝐾)
lplnle.n 𝑁 = (LLines‘𝐾)
lplnle.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnle (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Distinct variable groups:   𝑦,𝐾   𝑦,   𝑦,𝑃   𝑦,𝑋
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)   𝑁(𝑦)   0 (𝑦)

Proof of Theorem lplnle
Dummy variables 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lplnle.b . . . 4 𝐵 = (Base‘𝐾)
2 lplnle.l . . . 4 = (le‘𝐾)
3 lplnle.z . . . 4 0 = (0.‘𝐾)
4 lplnle.a . . . 4 𝐴 = (Atoms‘𝐾)
5 lplnle.n . . . 4 𝑁 = (LLines‘𝐾)
61, 2, 3, 4, 5llnle 37532 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴)) → ∃𝑧𝑁 𝑧 𝑋)
763adantr3 1170 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑧𝑁 𝑧 𝑋)
8 simp1ll 1235 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝐾 ∈ HL)
91, 5llnbase 37523 . . . . . . 7 (𝑧𝑁𝑧𝐵)
1093ad2ant2 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝐵)
11 simp1lr 1236 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑋𝐵)
12 simp3 1137 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧 𝑋)
13 simp2 1136 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑁)
14 simp1r3 1270 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ¬ 𝑋𝑁)
15 nelne2 3042 . . . . . . . 8 ((𝑧𝑁 ∧ ¬ 𝑋𝑁) → 𝑧𝑋)
1613, 14, 15syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧𝑋)
17 eqid 2738 . . . . . . . . 9 (lt‘𝐾) = (lt‘𝐾)
182, 17pltval 18050 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑧𝑁𝑋𝐵) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
198, 13, 11, 18syl3anc 1370 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑧(lt‘𝐾)𝑋 ↔ (𝑧 𝑋𝑧𝑋)))
2012, 16, 19mpbir2and 710 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → 𝑧(lt‘𝐾)𝑋)
21 eqid 2738 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
22 eqid 2738 . . . . . . 7 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
231, 2, 17, 21, 22, 4hlrelat3 37426 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑧𝐵𝑋𝐵) ∧ 𝑧(lt‘𝐾)𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
248, 10, 11, 20, 23syl31anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋))
25 simp1ll 1235 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ HL)
2625hllatd 37378 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝐾 ∈ Lat)
27 simp21 1205 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝑁)
2827, 9syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧𝐵)
29 simp23 1207 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐴)
301, 4atbase 37303 . . . . . . . . . . . . 13 (𝑝𝐴𝑝𝐵)
3129, 30syl 17 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑝𝐵)
321, 21latjcl 18157 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑝𝐵) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
3326, 28, 31, 32syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝐵)
34 simp3l 1200 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝))
35 lplnle.p . . . . . . . . . . . 12 𝑃 = (LPlanes‘𝐾)
361, 22, 5, 35lplni 37546 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑧(join‘𝐾)𝑝) ∈ 𝐵𝑧𝑁) ∧ 𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
3725, 33, 27, 34, 36syl31anc 1372 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) ∈ 𝑃)
38 simp3r 1201 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → (𝑧(join‘𝐾)𝑝) 𝑋)
39 breq1 5077 . . . . . . . . . . 11 (𝑦 = (𝑧(join‘𝐾)𝑝) → (𝑦 𝑋 ↔ (𝑧(join‘𝐾)𝑝) 𝑋))
4039rspcev 3561 . . . . . . . . . 10 (((𝑧(join‘𝐾)𝑝) ∈ 𝑃 ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
4137, 38, 40syl2anc 584 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ (𝑧𝑁𝑧 𝑋𝑝𝐴) ∧ (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋)) → ∃𝑦𝑃 𝑦 𝑋)
42413exp 1118 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ((𝑧𝑁𝑧 𝑋𝑝𝐴) → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
43423expd 1352 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))))
44433imp 1110 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (𝑝𝐴 → ((𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋)))
4544rexlimdv 3212 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → (∃𝑝𝐴 (𝑧( ⋖ ‘𝐾)(𝑧(join‘𝐾)𝑝) ∧ (𝑧(join‘𝐾)𝑝) 𝑋) → ∃𝑦𝑃 𝑦 𝑋))
4624, 45mpd 15 . . . 4 ((((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) ∧ 𝑧𝑁𝑧 𝑋) → ∃𝑦𝑃 𝑦 𝑋)
47463exp 1118 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (𝑧𝑁 → (𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋)))
4847rexlimdv 3212 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → (∃𝑧𝑁 𝑧 𝑋 → ∃𝑦𝑃 𝑦 𝑋))
497, 48mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐵) ∧ (𝑋0 ∧ ¬ 𝑋𝐴 ∧ ¬ 𝑋𝑁)) → ∃𝑦𝑃 𝑦 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  ltcplt 18026  joincjn 18029  0.cp0 18141  Latclat 18149  ccvr 37276  Atomscatm 37277  HLchlt 37364  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  lplncvrlvol  37630
  Copyright terms: Public domain W3C validator