MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp331 Structured version   Visualization version   GIF version

Theorem simp331 1324
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp331 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simp331
StepHypRef Expression
1 simp31 1207 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant3 1133 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  ivthALT  34451  dalemclpjs  37575  dath2  37678  cdlema1N  37732  cdlemk7u  38811  cdlemk11u  38812  cdlemk12u  38813  cdlemk22  38834  cdlemk23-3  38843  cdlemk24-3  38844  cdlemk33N  38850  cdlemk11ta  38870  cdlemk11tc  38886  cdlemk54  38899
  Copyright terms: Public domain W3C validator