MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp331 Structured version   Visualization version   GIF version

Theorem simp331 1327
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp331 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)

Proof of Theorem simp331
StepHypRef Expression
1 simp31 1210 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜑)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  ivthALT  36330  dalemclpjs  39635  dath2  39738  cdlema1N  39792  cdlemk7u  40871  cdlemk11u  40872  cdlemk12u  40873  cdlemk22  40894  cdlemk23-3  40903  cdlemk24-3  40904  cdlemk33N  40910  cdlemk11ta  40930  cdlemk11tc  40946  cdlemk54  40959
  Copyright terms: Public domain W3C validator