![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp331 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp331 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp31 1210 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant3 1136 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: ivthALT 35220 dalemclpjs 38505 dath2 38608 cdlema1N 38662 cdlemk7u 39741 cdlemk11u 39742 cdlemk12u 39743 cdlemk22 39764 cdlemk23-3 39773 cdlemk24-3 39774 cdlemk33N 39780 cdlemk11ta 39800 cdlemk11tc 39816 cdlemk54 39829 |
Copyright terms: Public domain | W3C validator |