Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk12u Structured version   Visualization version   GIF version

Theorem cdlemk12u 40859
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 18, p. 119, showing Eq. 4 (line 10, p. 119) for the sigma1 (𝑈) case. (Contributed by NM, 4-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
cdlemk1.u 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemk12u ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑒   ,𝑒   𝐷,𝑒,𝑗   𝑒,𝐺,𝑗   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,𝑊   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑗,𝑂   𝑃,𝑗   𝑅,𝑗   𝑇,𝑗   𝑗,𝑊   𝑒,𝐹   𝑒,𝑋,𝑗
Allowed substitution hints:   𝐴(𝑒,𝑓)   𝐵(𝑒,𝑓,𝑖,𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   𝑈(𝑒,𝑓,𝑖,𝑗)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓)   𝐾(𝑒,𝑓)   (𝑒,𝑓)   𝑁(𝑒)   𝑂(𝑓,𝑖)   𝑋(𝑓,𝑖)

Proof of Theorem cdlemk12u
StepHypRef Expression
1 simp11l 1285 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐾 ∈ HL)
2 simp22l 1293 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝑃𝐴)
3 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simp212 1313 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐺𝑇)
5 cdlemk1.l . . . 4 = (le‘𝐾)
6 cdlemk1.a . . . 4 𝐴 = (Atoms‘𝐾)
7 cdlemk1.h . . . 4 𝐻 = (LHyp‘𝐾)
8 cdlemk1.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
95, 6, 7, 8ltrnat 40127 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
103, 4, 2, 9syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝐺𝑃) ∈ 𝐴)
11 simp23 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐹) = (𝑅𝑁))
12 simp213 1314 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝑋𝑇)
13 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐹𝑇)
14 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐷𝑇)
15 simp211 1312 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝑁𝑇)
16 simp331 1327 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐷) ≠ (𝑅𝐹))
17 simp333 1329 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝑋) ≠ (𝑅𝐷))
1817necomd 2980 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐷) ≠ (𝑅𝑋))
1916, 18jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝑋)))
20 simp311 1321 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐹 ≠ ( I ↾ 𝐵))
21 simp32l 1299 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝑋 ≠ ( I ↾ 𝐵))
22 simp312 1322 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐷 ≠ ( I ↾ 𝐵))
2320, 21, 223jca 1128 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)))
24 simp22 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
25 cdlemk1.b . . . 4 𝐵 = (Base‘𝐾)
26 cdlemk1.j . . . 4 = (join‘𝐾)
27 cdlemk1.m . . . 4 = (meet‘𝐾)
28 cdlemk1.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
29 cdlemk1.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
30 cdlemk1.o . . . 4 𝑂 = (𝑆𝐷)
31 cdlemk1.u . . . 4 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
3225, 5, 26, 27, 6, 7, 8, 28, 29, 30, 31cdlemkuat 40853 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝑋𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝑋)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝑋)‘𝑃) ∈ 𝐴)
333, 11, 12, 13, 14, 15, 19, 23, 24, 32syl333anc 1404 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝑋)‘𝑃) ∈ 𝐴)
34 simp32r 1300 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) ≠ (𝑅𝑋))
3534necomd 2980 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝑋) ≠ (𝑅𝐺))
366, 7, 8, 28trlcocnvat 40711 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝑇𝐺𝑇) ∧ (𝑅𝑋) ≠ (𝑅𝐺)) → (𝑅‘(𝑋𝐺)) ∈ 𝐴)
373, 12, 4, 35, 36syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅‘(𝑋𝐺)) ∈ 𝐴)
38 simp332 1328 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) ≠ (𝑅𝐷))
3938necomd 2980 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐷) ≠ (𝑅𝐺))
4016, 39jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)))
41 simp313 1323 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐺 ≠ ( I ↾ 𝐵))
4220, 41, 223jca 1128 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)))
4325, 5, 26, 27, 6, 7, 8, 28, 29, 30, 31cdlemkuat 40853 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
443, 11, 4, 13, 14, 15, 40, 42, 24, 43syl333anc 1404 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) ∈ 𝐴)
4525, 5, 26, 27, 6, 7, 8, 28, 29, 30, 31cdlemkuv2 40854 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
463, 11, 4, 13, 14, 15, 40, 42, 24, 45syl333anc 1404 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
471hllatd 39350 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐾 ∈ Lat)
4825, 6, 7, 8, 28trlnidat 40160 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) → (𝑅𝐺) ∈ 𝐴)
493, 4, 41, 48syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) ∈ 𝐴)
5025, 26, 6hlatjcl 39353 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
511, 2, 49, 50syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑃 (𝑅𝐺)) ∈ 𝐵)
52 simp1 1136 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇))
5315, 24, 113jca 1128 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
5425, 5, 26, 27, 6, 7, 8, 28, 29, 30cdlemkoatnle 40838 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑂𝑃) ∈ 𝐴 ∧ ¬ (𝑂𝑃) 𝑊))
5554simpld 494 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) ∈ 𝐴)
5652, 53, 20, 22, 16, 55syl113anc 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑂𝑃) ∈ 𝐴)
576, 7, 8, 28trlcocnvat 40711 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝐷𝑇) ∧ (𝑅𝐺) ≠ (𝑅𝐷)) → (𝑅‘(𝐺𝐷)) ∈ 𝐴)
583, 4, 14, 38, 57syl121anc 1377 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅‘(𝐺𝐷)) ∈ 𝐴)
5925, 26, 6hlatjcl 39353 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑂𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐺𝐷)) ∈ 𝐴) → ((𝑂𝑃) (𝑅‘(𝐺𝐷))) ∈ 𝐵)
601, 56, 58, 59syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑂𝑃) (𝑅‘(𝐺𝐷))) ∈ 𝐵)
6125, 5, 27latmle1 18405 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝐺)) ∈ 𝐵 ∧ ((𝑂𝑃) (𝑅‘(𝐺𝐷))) ∈ 𝐵) → ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) (𝑃 (𝑅𝐺)))
6247, 51, 60, 61syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) (𝑃 (𝑅𝐺)))
6346, 62eqbrtrd 5124 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) (𝑃 (𝑅𝐺)))
645, 26, 6, 7, 8, 28trljat1 40153 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
653, 4, 24, 64syl3anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
6663, 65breqtrd 5128 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) (𝑃 (𝐺𝑃)))
67 simp2 1137 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
68 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)))
69 simp33 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))
70 eqid 2729 . . . 4 (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐷)) (𝑅‘(𝑋𝐷)))) = (((𝐺𝑃) (𝑋𝑃)) ((𝑅‘(𝐺𝐷)) (𝑅‘(𝑋𝐷))))
7125, 5, 26, 27, 6, 7, 8, 28, 29, 30, 31, 70cdlemk11u 40858 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
7252, 67, 68, 21, 69, 71syl113anc 1384 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
735, 26, 6hlatlej2 39362 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐺) ∈ 𝐴) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
741, 2, 49, 73syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) (𝑃 (𝑅𝐺)))
7574, 65breqtrd 5128 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) (𝑃 (𝐺𝑃)))
7625, 5, 26, 27, 6, 7, 8, 28, 29, 30, 31cdlemkuel 40852 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝑋𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝑋)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑋 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → (𝑈𝑋) ∈ 𝑇)
773, 11, 12, 13, 14, 15, 19, 23, 24, 76syl333anc 1404 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑈𝑋) ∈ 𝑇)
785, 6, 7, 8ltrnel 40126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑋) ∈ 𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (((𝑈𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝑋)‘𝑃) 𝑊))
793, 77, 24, 78syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (((𝑈𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝑋)‘𝑃) 𝑊))
807, 8ltrncnv 40133 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → 𝐺𝑇)
813, 4, 80syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → 𝐺𝑇)
827, 8, 28trlcnv 40152 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) = (𝑅𝐺))
833, 4, 82syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) = (𝑅𝐺))
8483, 34eqnetrd 2992 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) ≠ (𝑅𝑋))
8525, 7, 8, 28trlcone 40715 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐺𝑇𝑋𝑇) ∧ ((𝑅𝐺) ≠ (𝑅𝑋) ∧ 𝑋 ≠ ( I ↾ 𝐵))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝑋)))
863, 81, 12, 84, 21, 85syl122anc 1381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) ≠ (𝑅‘(𝐺𝑋)))
8786necomd 2980 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅‘(𝐺𝑋)) ≠ (𝑅𝐺))
887, 8ltrncom 40725 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑋𝑇) → (𝐺𝑋) = (𝑋𝐺))
893, 81, 12, 88syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝐺𝑋) = (𝑋𝐺))
9089fveq2d 6844 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅‘(𝐺𝑋)) = (𝑅‘(𝑋𝐺)))
9187, 90, 833netr3d 3001 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅‘(𝑋𝐺)) ≠ (𝑅𝐺))
927, 8ltrnco 40706 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑋𝑇𝐺𝑇) → (𝑋𝐺) ∈ 𝑇)
933, 12, 81, 92syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑋𝐺) ∈ 𝑇)
945, 7, 8, 28trlle 40171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐺) ∈ 𝑇) → (𝑅‘(𝑋𝐺)) 𝑊)
953, 93, 94syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅‘(𝑋𝐺)) 𝑊)
965, 7, 8, 28trlle 40171 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
973, 4, 96syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑅𝐺) 𝑊)
985, 26, 6, 7lhp2atnle 40020 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑈𝑋)‘𝑃) ∈ 𝐴 ∧ ¬ ((𝑈𝑋)‘𝑃) 𝑊) ∧ (𝑅‘(𝑋𝐺)) ≠ (𝑅𝐺)) ∧ ((𝑅‘(𝑋𝐺)) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) 𝑊) ∧ ((𝑅𝐺) ∈ 𝐴 ∧ (𝑅𝐺) 𝑊)) → ¬ (𝑅𝐺) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
993, 79, 91, 37, 95, 49, 97, 98syl322anc 1400 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ¬ (𝑅𝐺) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
100 nbrne1 5121 . . 3 (((𝑅𝐺) (𝑃 (𝐺𝑃)) ∧ ¬ (𝑅𝐺) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))) → (𝑃 (𝐺𝑃)) ≠ (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
10175, 99, 100syl2anc 584 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → (𝑃 (𝐺𝑃)) ≠ (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))
1025, 26, 27, 62atm 39514 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐺𝑃) ∈ 𝐴) ∧ (((𝑈𝑋)‘𝑃) ∈ 𝐴 ∧ (𝑅‘(𝑋𝐺)) ∈ 𝐴 ∧ ((𝑈𝐺)‘𝑃) ∈ 𝐴) ∧ (((𝑈𝐺)‘𝑃) (𝑃 (𝐺𝑃)) ∧ ((𝑈𝐺)‘𝑃) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))) ∧ (𝑃 (𝐺𝑃)) ≠ (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺))))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
1031, 2, 10, 33, 37, 44, 66, 72, 101, 102syl333anc 1404 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇𝑋𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ (𝑋 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐺) ≠ (𝑅𝑋)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝑋) ≠ (𝑅𝐷)))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑈𝑋)‘𝑃) (𝑅‘(𝑋𝐺)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cmpt 5183   I cid 5525  ccnv 5630  cres 5633  ccom 5635  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  trLctrl 40145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146
This theorem is referenced by:  cdlemk12u-2N  40877  cdlemk22  40880
  Copyright terms: Public domain W3C validator