Proof of Theorem cdlema1N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cdlema1.b | . 2
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | cdlema1.l | . 2
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | simp11 1203 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝐾 ∈ HL) | 
| 4 | 3 | hllatd 39366 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝐾 ∈ Lat) | 
| 5 |  | simp12 1204 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑋 ∈ 𝐵) | 
| 6 |  | simp23 1208 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑅 ∈ 𝐴) | 
| 7 |  | cdlema1.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 8 | 1, 7 | atbase 39291 | . . . 4
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) | 
| 9 | 6, 8 | syl 17 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑅 ∈ 𝐵) | 
| 10 |  | cdlema1.j | . . . 4
⊢  ∨ =
(join‘𝐾) | 
| 11 | 1, 10 | latjcl 18485 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵) → (𝑋 ∨ 𝑅) ∈ 𝐵) | 
| 12 | 4, 5, 9, 11 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑅) ∈ 𝐵) | 
| 13 |  | simp13 1205 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑌 ∈ 𝐵) | 
| 14 | 1, 10 | latjcl 18485 | . . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) | 
| 15 | 4, 5, 13, 14 | syl3anc 1372 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑌) ∈ 𝐵) | 
| 16 | 1, 2, 10 | latlej1 18494 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) | 
| 17 | 4, 5, 13, 16 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑋 ≤ (𝑋 ∨ 𝑌)) | 
| 18 |  | simp21 1206 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑃 ∈ 𝐴) | 
| 19 | 1, 7 | atbase 39291 | . . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 20 | 18, 19 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑃 ∈ 𝐵) | 
| 21 |  | simp22 1207 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑄 ∈ 𝐴) | 
| 22 | 1, 7 | atbase 39291 | . . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) | 
| 23 | 21, 22 | syl 17 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑄 ∈ 𝐵) | 
| 24 | 1, 10 | latjcl 18485 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 25 | 4, 20, 23, 24 | syl3anc 1372 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑃 ∨ 𝑄) ∈ 𝐵) | 
| 26 |  | simp31r 1297 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑅 ≤ (𝑃 ∨ 𝑄)) | 
| 27 |  | simp32l 1298 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑃 ≤ 𝑋) | 
| 28 |  | simp32r 1299 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑄 ≤ 𝑌) | 
| 29 | 1, 2, 10 | latjlej12 18501 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑄 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) → (𝑃 ∨ 𝑄) ≤ (𝑋 ∨ 𝑌))) | 
| 30 | 4, 20, 5, 23, 13, 29 | syl122anc 1380 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → ((𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) → (𝑃 ∨ 𝑄) ≤ (𝑋 ∨ 𝑌))) | 
| 31 | 27, 28, 30 | mp2and 699 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑃 ∨ 𝑄) ≤ (𝑋 ∨ 𝑌)) | 
| 32 | 1, 2, 4, 9, 25, 15, 26, 31 | lattrd 18492 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑅 ≤ (𝑋 ∨ 𝑌)) | 
| 33 | 1, 2, 10 | latjle12 18496 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵 ∧ (𝑋 ∨ 𝑌) ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑅 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑅) ≤ (𝑋 ∨ 𝑌))) | 
| 34 | 4, 5, 9, 15, 33 | syl13anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑅 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑅) ≤ (𝑋 ∨ 𝑌))) | 
| 35 | 17, 32, 34 | mpbi2and 712 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑅) ≤ (𝑋 ∨ 𝑌)) | 
| 36 | 1, 2, 10 | latlej1 18494 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑅)) | 
| 37 | 4, 5, 9, 36 | syl3anc 1372 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑋 ≤ (𝑋 ∨ 𝑅)) | 
| 38 |  | simp331 1326 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝐹‘𝑌) ∈ 𝑁) | 
| 39 |  | simp332 1327 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∧ 𝑌) ∈ 𝐴) | 
| 40 |  | simp333 1328 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → ¬ 𝑄 ≤ 𝑋) | 
| 41 |  | cdlema1.m | . . . . . . . . . 10
⊢  ∧ =
(meet‘𝐾) | 
| 42 | 1, 2, 41 | latmle1 18510 | . . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) | 
| 43 | 4, 5, 13, 42 | syl3anc 1372 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∧ 𝑌) ≤ 𝑋) | 
| 44 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑄 = (𝑋 ∧ 𝑌) → (𝑄 ≤ 𝑋 ↔ (𝑋 ∧ 𝑌) ≤ 𝑋)) | 
| 45 | 43, 44 | syl5ibrcom 247 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑄 = (𝑋 ∧ 𝑌) → 𝑄 ≤ 𝑋)) | 
| 46 | 45 | necon3bd 2953 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (¬ 𝑄 ≤ 𝑋 → 𝑄 ≠ (𝑋 ∧ 𝑌))) | 
| 47 | 40, 46 | mpd 15 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑄 ≠ (𝑋 ∧ 𝑌)) | 
| 48 | 1, 2, 41 | latmle2 18511 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) | 
| 49 | 4, 5, 13, 48 | syl3anc 1372 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∧ 𝑌) ≤ 𝑌) | 
| 50 |  | cdlema1.n | . . . . . 6
⊢ 𝑁 = (Lines‘𝐾) | 
| 51 |  | cdlema1.f | . . . . . 6
⊢ 𝐹 = (pmap‘𝐾) | 
| 52 | 1, 2, 10, 7, 50, 51 | lneq2at 39781 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ (𝐹‘𝑌) ∈ 𝑁) ∧ (𝑄 ∈ 𝐴 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑄 ≠ (𝑋 ∧ 𝑌)) ∧ (𝑄 ≤ 𝑌 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌)) → 𝑌 = (𝑄 ∨ (𝑋 ∧ 𝑌))) | 
| 53 | 3, 13, 38, 21, 39, 47, 28, 49, 52 | syl332anc 1402 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑌 = (𝑄 ∨ (𝑋 ∧ 𝑌))) | 
| 54 | 1, 10 | latjcl 18485 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵) → (𝑃 ∨ 𝑅) ∈ 𝐵) | 
| 55 | 4, 20, 9, 54 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑃 ∨ 𝑅) ∈ 𝐵) | 
| 56 | 6, 21, 18 | 3jca 1128 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴)) | 
| 57 |  | simp31l 1296 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑅 ≠ 𝑃) | 
| 58 | 3, 56, 57 | 3jca 1128 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ≠ 𝑃)) | 
| 59 | 2, 10, 7 | hlatexch1 39398 | . . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ≠ 𝑃) → (𝑅 ≤ (𝑃 ∨ 𝑄) → 𝑄 ≤ (𝑃 ∨ 𝑅))) | 
| 60 | 58, 26, 59 | sylc 65 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑄 ≤ (𝑃 ∨ 𝑅)) | 
| 61 | 20, 5, 9 | 3jca 1128 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵)) | 
| 62 | 4, 61 | jca 511 | . . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵))) | 
| 63 | 1, 2, 10 | latjlej1 18499 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵)) → (𝑃 ≤ 𝑋 → (𝑃 ∨ 𝑅) ≤ (𝑋 ∨ 𝑅))) | 
| 64 | 62, 27, 63 | sylc 65 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑃 ∨ 𝑅) ≤ (𝑋 ∨ 𝑅)) | 
| 65 | 1, 2, 4, 23, 55, 12, 60, 64 | lattrd 18492 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑄 ≤ (𝑋 ∨ 𝑅)) | 
| 66 | 1, 2, 10, 41 | latmlej11 18524 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵)) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑅)) | 
| 67 | 4, 5, 13, 9, 66 | syl13anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑅)) | 
| 68 | 1, 41 | latmcl 18486 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) | 
| 69 | 4, 5, 13, 68 | syl3anc 1372 | . . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∧ 𝑌) ∈ 𝐵) | 
| 70 | 1, 2, 10 | latjle12 18496 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ (𝑋 ∨ 𝑅) ∈ 𝐵)) → ((𝑄 ≤ (𝑋 ∨ 𝑅) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑅)) ↔ (𝑄 ∨ (𝑋 ∧ 𝑌)) ≤ (𝑋 ∨ 𝑅))) | 
| 71 | 4, 23, 69, 12, 70 | syl13anc 1373 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → ((𝑄 ≤ (𝑋 ∨ 𝑅) ∧ (𝑋 ∧ 𝑌) ≤ (𝑋 ∨ 𝑅)) ↔ (𝑄 ∨ (𝑋 ∧ 𝑌)) ≤ (𝑋 ∨ 𝑅))) | 
| 72 | 65, 67, 71 | mpbi2and 712 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑄 ∨ (𝑋 ∧ 𝑌)) ≤ (𝑋 ∨ 𝑅)) | 
| 73 | 53, 72 | eqbrtrd 5164 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → 𝑌 ≤ (𝑋 ∨ 𝑅)) | 
| 74 | 1, 2, 10 | latjle12 18496 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ∨ 𝑅) ∈ 𝐵)) → ((𝑋 ≤ (𝑋 ∨ 𝑅) ∧ 𝑌 ≤ (𝑋 ∨ 𝑅)) ↔ (𝑋 ∨ 𝑌) ≤ (𝑋 ∨ 𝑅))) | 
| 75 | 4, 5, 13, 12, 74 | syl13anc 1373 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → ((𝑋 ≤ (𝑋 ∨ 𝑅) ∧ 𝑌 ≤ (𝑋 ∨ 𝑅)) ↔ (𝑋 ∨ 𝑌) ≤ (𝑋 ∨ 𝑅))) | 
| 76 | 37, 73, 75 | mpbi2and 712 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑌) ≤ (𝑋 ∨ 𝑅)) | 
| 77 | 1, 2, 4, 12, 15, 35, 76 | latasymd 18491 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ((𝑅 ≠ 𝑃 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑃 ≤ 𝑋 ∧ 𝑄 ≤ 𝑌) ∧ ((𝐹‘𝑌) ∈ 𝑁 ∧ (𝑋 ∧ 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑋))) → (𝑋 ∨ 𝑅) = (𝑋 ∨ 𝑌)) |