Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlema1N Structured version   Visualization version   GIF version

Theorem cdlema1N 39780
Description: A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlema1.b 𝐵 = (Base‘𝐾)
cdlema1.l = (le‘𝐾)
cdlema1.j = (join‘𝐾)
cdlema1.m = (meet‘𝐾)
cdlema1.a 𝐴 = (Atoms‘𝐾)
cdlema1.n 𝑁 = (Lines‘𝐾)
cdlema1.f 𝐹 = (pmap‘𝐾)
Assertion
Ref Expression
cdlema1N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) = (𝑋 𝑌))

Proof of Theorem cdlema1N
StepHypRef Expression
1 cdlema1.b . 2 𝐵 = (Base‘𝐾)
2 cdlema1.l . 2 = (le‘𝐾)
3 simp11 1204 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝐾 ∈ HL)
43hllatd 39353 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝐾 ∈ Lat)
5 simp12 1205 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑋𝐵)
6 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅𝐴)
7 cdlema1.a . . . . 5 𝐴 = (Atoms‘𝐾)
81, 7atbase 39278 . . . 4 (𝑅𝐴𝑅𝐵)
96, 8syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅𝐵)
10 cdlema1.j . . . 4 = (join‘𝐾)
111, 10latjcl 18345 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑅𝐵) → (𝑋 𝑅) ∈ 𝐵)
124, 5, 9, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) ∈ 𝐵)
13 simp13 1206 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑌𝐵)
141, 10latjcl 18345 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
154, 5, 13, 14syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) ∈ 𝐵)
161, 2, 10latlej1 18354 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
174, 5, 13, 16syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑋 (𝑋 𝑌))
18 simp21 1207 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑃𝐴)
191, 7atbase 39278 . . . . . 6 (𝑃𝐴𝑃𝐵)
2018, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑃𝐵)
21 simp22 1208 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄𝐴)
221, 7atbase 39278 . . . . . 6 (𝑄𝐴𝑄𝐵)
2321, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄𝐵)
241, 10latjcl 18345 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
254, 20, 23, 24syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑄) ∈ 𝐵)
26 simp31r 1298 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅 (𝑃 𝑄))
27 simp32l 1299 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑃 𝑋)
28 simp32r 1300 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 𝑌)
291, 2, 10latjlej12 18361 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵) ∧ (𝑄𝐵𝑌𝐵)) → ((𝑃 𝑋𝑄 𝑌) → (𝑃 𝑄) (𝑋 𝑌)))
304, 20, 5, 23, 13, 29syl122anc 1381 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑃 𝑋𝑄 𝑌) → (𝑃 𝑄) (𝑋 𝑌)))
3127, 28, 30mp2and 699 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑄) (𝑋 𝑌))
321, 2, 4, 9, 25, 15, 26, 31lattrd 18352 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅 (𝑋 𝑌))
331, 2, 10latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑅𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑋 (𝑋 𝑌) ∧ 𝑅 (𝑋 𝑌)) ↔ (𝑋 𝑅) (𝑋 𝑌)))
344, 5, 9, 15, 33syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑋 (𝑋 𝑌) ∧ 𝑅 (𝑋 𝑌)) ↔ (𝑋 𝑅) (𝑋 𝑌)))
3517, 32, 34mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) (𝑋 𝑌))
361, 2, 10latlej1 18354 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑅𝐵) → 𝑋 (𝑋 𝑅))
374, 5, 9, 36syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑋 (𝑋 𝑅))
38 simp331 1327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝐹𝑌) ∈ 𝑁)
39 simp332 1328 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) ∈ 𝐴)
40 simp333 1329 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ¬ 𝑄 𝑋)
41 cdlema1.m . . . . . . . . . 10 = (meet‘𝐾)
421, 2, 41latmle1 18370 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
434, 5, 13, 42syl3anc 1373 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) 𝑋)
44 breq1 5095 . . . . . . . 8 (𝑄 = (𝑋 𝑌) → (𝑄 𝑋 ↔ (𝑋 𝑌) 𝑋))
4543, 44syl5ibrcom 247 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑄 = (𝑋 𝑌) → 𝑄 𝑋))
4645necon3bd 2939 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (¬ 𝑄 𝑋𝑄 ≠ (𝑋 𝑌)))
4740, 46mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 ≠ (𝑋 𝑌))
481, 2, 41latmle2 18371 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
494, 5, 13, 48syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) 𝑌)
50 cdlema1.n . . . . . 6 𝑁 = (Lines‘𝐾)
51 cdlema1.f . . . . . 6 𝐹 = (pmap‘𝐾)
521, 2, 10, 7, 50, 51lneq2at 39767 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐵 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑄𝐴 ∧ (𝑋 𝑌) ∈ 𝐴𝑄 ≠ (𝑋 𝑌)) ∧ (𝑄 𝑌 ∧ (𝑋 𝑌) 𝑌)) → 𝑌 = (𝑄 (𝑋 𝑌)))
533, 13, 38, 21, 39, 47, 28, 49, 52syl332anc 1403 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑌 = (𝑄 (𝑋 𝑌)))
541, 10latjcl 18345 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
554, 20, 9, 54syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑅) ∈ 𝐵)
566, 21, 183jca 1128 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑅𝐴𝑄𝐴𝑃𝐴))
57 simp31l 1297 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅𝑃)
583, 56, 573jca 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃))
592, 10, 7hlatexch1 39384 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃) → (𝑅 (𝑃 𝑄) → 𝑄 (𝑃 𝑅)))
6058, 26, 59sylc 65 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 (𝑃 𝑅))
6120, 5, 93jca 1128 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃𝐵𝑋𝐵𝑅𝐵))
624, 61jca 511 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵𝑅𝐵)))
631, 2, 10latjlej1 18359 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵𝑅𝐵)) → (𝑃 𝑋 → (𝑃 𝑅) (𝑋 𝑅)))
6462, 27, 63sylc 65 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑅) (𝑋 𝑅))
651, 2, 4, 23, 55, 12, 60, 64lattrd 18352 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 (𝑋 𝑅))
661, 2, 10, 41latmlej11 18384 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑅𝐵)) → (𝑋 𝑌) (𝑋 𝑅))
674, 5, 13, 9, 66syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) (𝑋 𝑅))
681, 41latmcl 18346 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
694, 5, 13, 68syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) ∈ 𝐵)
701, 2, 10latjle12 18356 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑅) ∈ 𝐵)) → ((𝑄 (𝑋 𝑅) ∧ (𝑋 𝑌) (𝑋 𝑅)) ↔ (𝑄 (𝑋 𝑌)) (𝑋 𝑅)))
714, 23, 69, 12, 70syl13anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑄 (𝑋 𝑅) ∧ (𝑋 𝑌) (𝑋 𝑅)) ↔ (𝑄 (𝑋 𝑌)) (𝑋 𝑅)))
7265, 67, 71mpbi2and 712 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑄 (𝑋 𝑌)) (𝑋 𝑅))
7353, 72eqbrtrd 5114 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑌 (𝑋 𝑅))
741, 2, 10latjle12 18356 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑅) ∈ 𝐵)) → ((𝑋 (𝑋 𝑅) ∧ 𝑌 (𝑋 𝑅)) ↔ (𝑋 𝑌) (𝑋 𝑅)))
754, 5, 13, 12, 74syl13anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑋 (𝑋 𝑅) ∧ 𝑌 (𝑋 𝑅)) ↔ (𝑋 𝑌) (𝑋 𝑅)))
7637, 73, 75mpbi2and 712 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) (𝑋 𝑅))
771, 2, 4, 12, 15, 35, 76latasymd 18351 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39252  HLchlt 39339  Linesclines 39483  pmapcpmap 39486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-lines 39490  df-pmap 39493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator