Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlema1N Structured version   Visualization version   GIF version

Theorem cdlema1N 35954
Description: A condition for required for proof of Lemma A in [Crawley] p. 112. (Contributed by NM, 29-Apr-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlema1.b 𝐵 = (Base‘𝐾)
cdlema1.l = (le‘𝐾)
cdlema1.j = (join‘𝐾)
cdlema1.m = (meet‘𝐾)
cdlema1.a 𝐴 = (Atoms‘𝐾)
cdlema1.n 𝑁 = (Lines‘𝐾)
cdlema1.f 𝐹 = (pmap‘𝐾)
Assertion
Ref Expression
cdlema1N (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) = (𝑋 𝑌))

Proof of Theorem cdlema1N
StepHypRef Expression
1 cdlema1.b . 2 𝐵 = (Base‘𝐾)
2 cdlema1.l . 2 = (le‘𝐾)
3 simp11 1217 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝐾 ∈ HL)
43hllatd 35527 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝐾 ∈ Lat)
5 simp12 1218 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑋𝐵)
6 simp23 1222 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅𝐴)
7 cdlema1.a . . . . 5 𝐴 = (Atoms‘𝐾)
81, 7atbase 35452 . . . 4 (𝑅𝐴𝑅𝐵)
96, 8syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅𝐵)
10 cdlema1.j . . . 4 = (join‘𝐾)
111, 10latjcl 17448 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑅𝐵) → (𝑋 𝑅) ∈ 𝐵)
124, 5, 9, 11syl3anc 1439 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) ∈ 𝐵)
13 simp13 1219 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑌𝐵)
141, 10latjcl 17448 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
154, 5, 13, 14syl3anc 1439 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) ∈ 𝐵)
161, 2, 10latlej1 17457 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 (𝑋 𝑌))
174, 5, 13, 16syl3anc 1439 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑋 (𝑋 𝑌))
18 simp21 1220 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑃𝐴)
191, 7atbase 35452 . . . . . 6 (𝑃𝐴𝑃𝐵)
2018, 19syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑃𝐵)
21 simp22 1221 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄𝐴)
221, 7atbase 35452 . . . . . 6 (𝑄𝐴𝑄𝐵)
2321, 22syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄𝐵)
241, 10latjcl 17448 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
254, 20, 23, 24syl3anc 1439 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑄) ∈ 𝐵)
26 simp31r 1353 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅 (𝑃 𝑄))
27 simp32l 1354 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑃 𝑋)
28 simp32r 1355 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 𝑌)
291, 2, 10latjlej12 17464 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵) ∧ (𝑄𝐵𝑌𝐵)) → ((𝑃 𝑋𝑄 𝑌) → (𝑃 𝑄) (𝑋 𝑌)))
304, 20, 5, 23, 13, 29syl122anc 1447 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑃 𝑋𝑄 𝑌) → (𝑃 𝑄) (𝑋 𝑌)))
3127, 28, 30mp2and 689 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑄) (𝑋 𝑌))
321, 2, 4, 9, 25, 15, 26, 31lattrd 17455 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅 (𝑋 𝑌))
331, 2, 10latjle12 17459 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑅𝐵 ∧ (𝑋 𝑌) ∈ 𝐵)) → ((𝑋 (𝑋 𝑌) ∧ 𝑅 (𝑋 𝑌)) ↔ (𝑋 𝑅) (𝑋 𝑌)))
344, 5, 9, 15, 33syl13anc 1440 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑋 (𝑋 𝑌) ∧ 𝑅 (𝑋 𝑌)) ↔ (𝑋 𝑅) (𝑋 𝑌)))
3517, 32, 34mpbi2and 702 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) (𝑋 𝑌))
361, 2, 10latlej1 17457 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑅𝐵) → 𝑋 (𝑋 𝑅))
374, 5, 9, 36syl3anc 1439 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑋 (𝑋 𝑅))
38 simp331 1382 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝐹𝑌) ∈ 𝑁)
39 simp332 1383 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) ∈ 𝐴)
40 simp333 1384 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ¬ 𝑄 𝑋)
41 cdlema1.m . . . . . . . . . 10 = (meet‘𝐾)
421, 2, 41latmle1 17473 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
434, 5, 13, 42syl3anc 1439 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) 𝑋)
44 breq1 4891 . . . . . . . 8 (𝑄 = (𝑋 𝑌) → (𝑄 𝑋 ↔ (𝑋 𝑌) 𝑋))
4543, 44syl5ibrcom 239 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑄 = (𝑋 𝑌) → 𝑄 𝑋))
4645necon3bd 2983 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (¬ 𝑄 𝑋𝑄 ≠ (𝑋 𝑌)))
4740, 46mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 ≠ (𝑋 𝑌))
481, 2, 41latmle2 17474 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑌)
494, 5, 13, 48syl3anc 1439 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) 𝑌)
50 cdlema1.n . . . . . 6 𝑁 = (Lines‘𝐾)
51 cdlema1.f . . . . . 6 𝐹 = (pmap‘𝐾)
521, 2, 10, 7, 50, 51lneq2at 35941 . . . . 5 (((𝐾 ∈ HL ∧ 𝑌𝐵 ∧ (𝐹𝑌) ∈ 𝑁) ∧ (𝑄𝐴 ∧ (𝑋 𝑌) ∈ 𝐴𝑄 ≠ (𝑋 𝑌)) ∧ (𝑄 𝑌 ∧ (𝑋 𝑌) 𝑌)) → 𝑌 = (𝑄 (𝑋 𝑌)))
533, 13, 38, 21, 39, 47, 28, 49, 52syl332anc 1469 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑌 = (𝑄 (𝑋 𝑌)))
541, 10latjcl 17448 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑅𝐵) → (𝑃 𝑅) ∈ 𝐵)
554, 20, 9, 54syl3anc 1439 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑅) ∈ 𝐵)
566, 21, 183jca 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑅𝐴𝑄𝐴𝑃𝐴))
57 simp31l 1352 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑅𝑃)
583, 56, 573jca 1119 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃))
592, 10, 7hlatexch1 35558 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑄𝐴𝑃𝐴) ∧ 𝑅𝑃) → (𝑅 (𝑃 𝑄) → 𝑄 (𝑃 𝑅)))
6058, 26, 59sylc 65 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 (𝑃 𝑅))
6120, 5, 93jca 1119 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃𝐵𝑋𝐵𝑅𝐵))
624, 61jca 507 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵𝑅𝐵)))
631, 2, 10latjlej1 17462 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑋𝐵𝑅𝐵)) → (𝑃 𝑋 → (𝑃 𝑅) (𝑋 𝑅)))
6462, 27, 63sylc 65 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑃 𝑅) (𝑋 𝑅))
651, 2, 4, 23, 55, 12, 60, 64lattrd 17455 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑄 (𝑋 𝑅))
661, 2, 10, 41latmlej11 17487 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑅𝐵)) → (𝑋 𝑌) (𝑋 𝑅))
674, 5, 13, 9, 66syl13anc 1440 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) (𝑋 𝑅))
681, 41latmcl 17449 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
694, 5, 13, 68syl3anc 1439 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) ∈ 𝐵)
701, 2, 10latjle12 17459 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄𝐵 ∧ (𝑋 𝑌) ∈ 𝐵 ∧ (𝑋 𝑅) ∈ 𝐵)) → ((𝑄 (𝑋 𝑅) ∧ (𝑋 𝑌) (𝑋 𝑅)) ↔ (𝑄 (𝑋 𝑌)) (𝑋 𝑅)))
714, 23, 69, 12, 70syl13anc 1440 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑄 (𝑋 𝑅) ∧ (𝑋 𝑌) (𝑋 𝑅)) ↔ (𝑄 (𝑋 𝑌)) (𝑋 𝑅)))
7265, 67, 71mpbi2and 702 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑄 (𝑋 𝑌)) (𝑋 𝑅))
7353, 72eqbrtrd 4910 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → 𝑌 (𝑋 𝑅))
741, 2, 10latjle12 17459 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵 ∧ (𝑋 𝑅) ∈ 𝐵)) → ((𝑋 (𝑋 𝑅) ∧ 𝑌 (𝑋 𝑅)) ↔ (𝑋 𝑌) (𝑋 𝑅)))
754, 5, 13, 12, 74syl13anc 1440 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → ((𝑋 (𝑋 𝑅) ∧ 𝑌 (𝑋 𝑅)) ↔ (𝑋 𝑌) (𝑋 𝑅)))
7637, 73, 75mpbi2and 702 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑌) (𝑋 𝑅))
771, 2, 4, 12, 15, 35, 76latasymd 17454 1 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ ((𝑅𝑃𝑅 (𝑃 𝑄)) ∧ (𝑃 𝑋𝑄 𝑌) ∧ ((𝐹𝑌) ∈ 𝑁 ∧ (𝑋 𝑌) ∈ 𝐴 ∧ ¬ 𝑄 𝑋))) → (𝑋 𝑅) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  lecple 16356  joincjn 17341  meetcmee 17342  Latclat 17442  Atomscatm 35426  HLchlt 35513  Linesclines 35657  pmapcpmap 35660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-lat 17443  df-clat 17505  df-oposet 35339  df-ol 35341  df-oml 35342  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514  df-lines 35664  df-pmap 35667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator