Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simp323 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp323 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1206 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant3 1133 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: dalemrot 37650 dath2 37730 cdleme18d 38288 cdleme20i 38310 cdleme20j 38311 cdleme20l2 38314 cdleme20l 38315 cdleme20m 38316 cdleme20 38317 cdleme21j 38329 cdleme22eALTN 38338 cdleme26eALTN 38354 cdlemk16a 38849 cdlemk12u-2N 38883 cdlemk21-2N 38884 cdlemk22 38886 cdlemk31 38889 cdlemk11ta 38922 |
Copyright terms: Public domain | W3C validator |