MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp323 Structured version   Visualization version   GIF version

Theorem simp323 1323
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp323 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)

Proof of Theorem simp323
StepHypRef Expression
1 simp23 1206 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant3 1133 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  dalemrot  37650  dath2  37730  cdleme18d  38288  cdleme20i  38310  cdleme20j  38311  cdleme20l2  38314  cdleme20l  38315  cdleme20m  38316  cdleme20  38317  cdleme21j  38329  cdleme22eALTN  38338  cdleme26eALTN  38354  cdlemk16a  38849  cdlemk12u-2N  38883  cdlemk21-2N  38884  cdlemk22  38886  cdlemk31  38889  cdlemk11ta  38922
  Copyright terms: Public domain W3C validator