![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp323 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp323 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1205 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant3 1132 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: dalemrot 39018 dath2 39098 cdleme18d 39656 cdleme20i 39678 cdleme20j 39679 cdleme20l2 39682 cdleme20l 39683 cdleme20m 39684 cdleme20 39685 cdleme21j 39697 cdleme22eALTN 39706 cdleme26eALTN 39722 cdlemk16a 40217 cdlemk12u-2N 40251 cdlemk21-2N 40252 cdlemk22 40254 cdlemk31 40257 cdlemk11ta 40290 |
Copyright terms: Public domain | W3C validator |