![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp323 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp323 | ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp23 1266 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) → 𝜒) | |
2 | 1 | 3ad2ant3 1166 | 1 ⊢ ((𝜂 ∧ 𝜁 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏)) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: dalemrot 35678 dath2 35758 cdleme18d 36316 cdleme20i 36338 cdleme20j 36339 cdleme20l2 36342 cdleme20l 36343 cdleme20m 36344 cdleme20 36345 cdleme21j 36357 cdleme22eALTN 36366 cdleme26eALTN 36382 cdlemk16a 36877 cdlemk12u-2N 36911 cdlemk21-2N 36912 cdlemk22 36914 cdlemk31 36917 cdlemk11ta 36950 |
Copyright terms: Public domain | W3C validator |