MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp323 Structured version   Visualization version   GIF version

Theorem simp323 1326
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp323 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)

Proof of Theorem simp323
StepHypRef Expression
1 simp23 1209 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant3 1135 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  dalemrot  39639  dath2  39719  cdleme18d  40277  cdleme20i  40299  cdleme20j  40300  cdleme20l2  40303  cdleme20l  40304  cdleme20m  40305  cdleme20  40306  cdleme21j  40318  cdleme22eALTN  40327  cdleme26eALTN  40343  cdlemk16a  40838  cdlemk12u-2N  40872  cdlemk21-2N  40873  cdlemk22  40875  cdlemk31  40878  cdlemk11ta  40911
  Copyright terms: Public domain W3C validator