MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp323 Structured version   Visualization version   GIF version

Theorem simp323 1322
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp323 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)

Proof of Theorem simp323
StepHypRef Expression
1 simp23 1205 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant3 1132 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1086
This theorem is referenced by:  dalemrot  39018  dath2  39098  cdleme18d  39656  cdleme20i  39678  cdleme20j  39679  cdleme20l2  39682  cdleme20l  39683  cdleme20m  39684  cdleme20  39685  cdleme21j  39697  cdleme22eALTN  39706  cdleme26eALTN  39722  cdlemk16a  40217  cdlemk12u-2N  40251  cdlemk21-2N  40252  cdlemk22  40254  cdlemk31  40257  cdlemk11ta  40290
  Copyright terms: Public domain W3C validator