Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ivthALT Structured version   Visualization version   GIF version

Theorem ivthALT 36353
Description: An alternate proof of the Intermediate Value Theorem ivth 25407 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ivthALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑈

Proof of Theorem ivthALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp31 1210 . . . . . 6 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
2 cncff 24837 . . . . . 6 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
31, 2syl 17 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
4 ffun 6709 . . . . 5 (𝐹:𝐷⟶ℂ → Fun 𝐹)
53, 4syl 17 . . . 4 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → Fun 𝐹)
653ad2ant3 1135 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → Fun 𝐹)
7 iccconn 24770 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
873adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
983ad2ant1 1133 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
10 simpr1 1195 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
1110, 2syl 17 . . . . . . . . . . . . 13 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
1211anim2i 617 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ 𝐷 ∧ (𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
13123impb 1114 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
14133ad2ant3 1135 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
154adantl 481 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → Fun 𝐹)
16 fdm 6715 . . . . . . . . . . . . 13 (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷)
1716sseq2d 3991 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℂ → ((𝐴[,]𝐵) ⊆ dom 𝐹 ↔ (𝐴[,]𝐵) ⊆ 𝐷))
1817biimparc 479 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (𝐴[,]𝐵) ⊆ dom 𝐹)
1915, 18jca 511 . . . . . . . . . 10 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
2014, 19syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
21 fores 6800 . . . . . . . . 9 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
2220, 21syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
23 retop 24700 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
24 simp332 1328 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ)
25 uniretop 24701 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
2625restuni 23100 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
2723, 24, 26sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
28 foeq3 6788 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
3022, 29mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
31 simp331 1327 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (𝐷cn→ℂ))
32 ssid 3981 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
33 eqid 2735 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2735 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
3533cnfldtop 24722 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
3633cnfldtopon 24721 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736toponunii 22854 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
3837restid 17447 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3935, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
4039eqcomi 2744 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4133, 34, 40cncfcn 24854 . . . . . . . . . . . . . . 15 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4232, 41mpan2 691 . . . . . . . . . . . . . 14 (𝐷 ⊆ ℂ → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
43423ad2ant2 1134 . . . . . . . . . . . . 13 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
44433ad2ant3 1135 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4531, 44eleqtrd 2836 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
46 simp31 1210 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ 𝐷)
47 simp32 1211 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ⊆ ℂ)
48 resttopon 23099 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
4936, 47, 48sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
50 toponuni 22852 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5149, 50syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5246, 51sseqtrd 3995 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷))
53 eqid 2735 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
5453cnrest 23223 . . . . . . . . . . 11 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)) ∧ (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷)) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5545, 52, 54syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5635a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ Top)
57 cnex 11210 . . . . . . . . . . . . . 14 ℂ ∈ V
58 ssexg 5293 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ ℂ ∈ V) → 𝐷 ∈ V)
5947, 57, 58sylancl 586 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ∈ V)
60 restabs 23103 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ 𝐷𝐷 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
6156, 46, 59, 60syl3anc 1373 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
62 iccssre 13446 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63623adant3 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
64633ad2ant1 1133 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ℝ)
65 eqid 2735 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (topGen‘ran (,))
6633, 65rerest 24743 . . . . . . . . . . . . 13 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6764, 66syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6861, 67eqtrd 2770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6968oveq1d 7420 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7055, 69eleqtrd 2836 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7136a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
72 df-ima 5667 . . . . . . . . . . . 12 (𝐹 “ (𝐴[,]𝐵)) = ran (𝐹 ↾ (𝐴[,]𝐵))
7372eqimss2i 4020 . . . . . . . . . . 11 ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))
7473a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
75 ax-resscn 11186 . . . . . . . . . . 11 ℝ ⊆ ℂ
7624, 75sstrdi 3971 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ)
77 cnrest2 23224 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7871, 74, 76, 77syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7970, 78mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8033, 65rerest 24743 . . . . . . . . . 10 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8124, 80syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8281oveq2d 7421 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8379, 82eleqtrd 2836 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
84 eqid 2735 . . . . . . . 8 ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))
8584cnconn 23360 . . . . . . 7 ((((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ∧ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∧ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
869, 30, 83, 85syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
87 reconn 24768 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
88873ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
89883ad2ant3 1135 . . . . . . 7 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
90893ad2ant3 1135 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
9186, 90mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))
92 simp11 1204 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ)
9392rexrd 11285 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ*)
94 simp12 1205 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ)
9594rexrd 11285 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ*)
96 ltle 11323 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
9796imp 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98973adantl3 1169 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
99983adant3 1132 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴𝐵)
100 lbicc2 13481 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
10193, 95, 99, 100syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ (𝐴[,]𝐵))
102 funfvima2 7223 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐴 ∈ (𝐴[,]𝐵) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵))))
10320, 101, 102sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)))
104 ubicc2 13482 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
10593, 95, 99, 104syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ (𝐴[,]𝐵))
106 funfvima2 7223 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐵 ∈ (𝐴[,]𝐵) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))))
10720, 105, 106sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵)))
108 oveq1 7412 . . . . . . . 8 (𝑥 = (𝐹𝐴) → (𝑥[,]𝑦) = ((𝐹𝐴)[,]𝑦))
109108sseq1d 3990 . . . . . . 7 (𝑥 = (𝐹𝐴) → ((𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
110 oveq2 7413 . . . . . . . 8 (𝑦 = (𝐹𝐵) → ((𝐹𝐴)[,]𝑦) = ((𝐹𝐴)[,](𝐹𝐵)))
111110sseq1d 3990 . . . . . . 7 (𝑦 = (𝐹𝐵) → (((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
112109, 111rspc2v 3612 . . . . . 6 (((𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
113103, 107, 112syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
11491, 113mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
115 ioossicc 13450 . . . . . . . 8 ((𝐹𝐴)(,)(𝐹𝐵)) ⊆ ((𝐹𝐴)[,](𝐹𝐵))
116115sseli 3954 . . . . . . 7 (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1171163ad2ant3 1135 . . . . . 6 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1181173ad2ant3 1135 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1191183ad2ant3 1135 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
120114, 119sseldd 3959 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ (𝐹 “ (𝐴[,]𝐵)))
121 fvelima 6944 . . 3 ((Fun 𝐹𝑈 ∈ (𝐹 “ (𝐴[,]𝐵))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
1226, 120, 121syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
123 simpl1 1192 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*)
124123a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*))
125 simprr 772 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) = 𝑈)
12624, 103sseldd 3959 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ)
127 simp333 1329 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))
128126rexrd 11285 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ*)
12924, 107sseldd 3959 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ)
130129rexrd 11285 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ*)
131 elioo2 13403 . . . . . . . . . . . . . . . . 17 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
132128, 130, 131syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
133127, 132mpbid 232 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
134133simp2d 1143 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) < 𝑈)
135126, 134gtned 11370 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐴))
136135adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐴))
137125, 136eqnetrd 2999 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐴))
138137neneqd 2937 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐴))
139 fveq2 6876 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
140138, 139nsyl 140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐴)
141 simp13 1206 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ℝ)
142133simp3d 1144 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 < (𝐹𝐵))
143141, 142ltned 11371 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐵))
144143adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐵))
145125, 144eqnetrd 2999 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐵))
146145neneqd 2937 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐵))
147 fveq2 6876 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
148146, 147nsyl 140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐵)
149 simprl3 1221 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))
150140, 148, 149ecase13d 36331 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐴 < 𝑥𝑥 < 𝐵))
151150ex 412 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝐴 < 𝑥𝑥 < 𝐵)))
152124, 151jcad 512 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵))))
153 3anass 1094 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
154152, 153imbitrrdi 252 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
155 rexr 11281 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
156 rexr 11281 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
157 elicc3 36335 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
158155, 156, 157syl2an 596 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1591583adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1601593ad2ant1 1133 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
161160anbi1d 631 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) ↔ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)))
162 elioo1 13402 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
163155, 156, 162syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1641633adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1651643ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
166154, 161, 1653imtr4d 294 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ (𝐴(,)𝐵)))
167 simpr 484 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈)
168167a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈))
169166, 168jcad 512 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹𝑥) = 𝑈)))
170169reximdv2 3150 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈 → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈))
171122, 170mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926   cuni 4883   class class class wbr 5119  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Fun wfun 6525  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  *cxr 11268   < clt 11269  cle 11270  (,)cioo 13362  [,]cicc 13365  t crest 17434  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315  Topctop 22831  TopOnctopon 22848   Cn ccn 23162  Conncconn 23349  cnccncf 24820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-starv 17286  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-rest 17436  df-topn 17437  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-cn 23165  df-cnp 23166  df-conn 23350  df-xms 24259  df-ms 24260  df-cncf 24822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator