Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ivthALT Structured version   Visualization version   GIF version

Theorem ivthALT 36330
Description: An alternate proof of the Intermediate Value Theorem ivth 25362 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ivthALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑈

Proof of Theorem ivthALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp31 1210 . . . . . 6 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
2 cncff 24793 . . . . . 6 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
31, 2syl 17 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
4 ffun 6694 . . . . 5 (𝐹:𝐷⟶ℂ → Fun 𝐹)
53, 4syl 17 . . . 4 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → Fun 𝐹)
653ad2ant3 1135 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → Fun 𝐹)
7 iccconn 24726 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
873adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
983ad2ant1 1133 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
10 simpr1 1195 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
1110, 2syl 17 . . . . . . . . . . . . 13 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
1211anim2i 617 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ 𝐷 ∧ (𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
13123impb 1114 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
14133ad2ant3 1135 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
154adantl 481 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → Fun 𝐹)
16 fdm 6700 . . . . . . . . . . . . 13 (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷)
1716sseq2d 3982 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℂ → ((𝐴[,]𝐵) ⊆ dom 𝐹 ↔ (𝐴[,]𝐵) ⊆ 𝐷))
1817biimparc 479 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (𝐴[,]𝐵) ⊆ dom 𝐹)
1915, 18jca 511 . . . . . . . . . 10 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
2014, 19syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
21 fores 6785 . . . . . . . . 9 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
2220, 21syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
23 retop 24656 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
24 simp332 1328 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ)
25 uniretop 24657 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
2625restuni 23056 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
2723, 24, 26sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
28 foeq3 6773 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
3022, 29mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
31 simp331 1327 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (𝐷cn→ℂ))
32 ssid 3972 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
33 eqid 2730 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2730 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
3533cnfldtop 24678 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
3633cnfldtopon 24677 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736toponunii 22810 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
3837restid 17403 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3935, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
4039eqcomi 2739 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4133, 34, 40cncfcn 24810 . . . . . . . . . . . . . . 15 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4232, 41mpan2 691 . . . . . . . . . . . . . 14 (𝐷 ⊆ ℂ → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
43423ad2ant2 1134 . . . . . . . . . . . . 13 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
44433ad2ant3 1135 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4531, 44eleqtrd 2831 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
46 simp31 1210 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ 𝐷)
47 simp32 1211 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ⊆ ℂ)
48 resttopon 23055 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
4936, 47, 48sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
50 toponuni 22808 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5149, 50syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5246, 51sseqtrd 3986 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷))
53 eqid 2730 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
5453cnrest 23179 . . . . . . . . . . 11 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)) ∧ (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷)) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5545, 52, 54syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5635a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ Top)
57 cnex 11156 . . . . . . . . . . . . . 14 ℂ ∈ V
58 ssexg 5281 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ ℂ ∈ V) → 𝐷 ∈ V)
5947, 57, 58sylancl 586 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ∈ V)
60 restabs 23059 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ 𝐷𝐷 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
6156, 46, 59, 60syl3anc 1373 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
62 iccssre 13397 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63623adant3 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
64633ad2ant1 1133 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ℝ)
65 eqid 2730 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (topGen‘ran (,))
6633, 65rerest 24699 . . . . . . . . . . . . 13 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6764, 66syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6861, 67eqtrd 2765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6968oveq1d 7405 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7055, 69eleqtrd 2831 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7136a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
72 df-ima 5654 . . . . . . . . . . . 12 (𝐹 “ (𝐴[,]𝐵)) = ran (𝐹 ↾ (𝐴[,]𝐵))
7372eqimss2i 4011 . . . . . . . . . . 11 ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))
7473a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
75 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
7624, 75sstrdi 3962 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ)
77 cnrest2 23180 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7871, 74, 76, 77syl3anc 1373 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7970, 78mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8033, 65rerest 24699 . . . . . . . . . 10 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8124, 80syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8281oveq2d 7406 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8379, 82eleqtrd 2831 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
84 eqid 2730 . . . . . . . 8 ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))
8584cnconn 23316 . . . . . . 7 ((((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ∧ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∧ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
869, 30, 83, 85syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
87 reconn 24724 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
88873ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
89883ad2ant3 1135 . . . . . . 7 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
90893ad2ant3 1135 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
9186, 90mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))
92 simp11 1204 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ)
9392rexrd 11231 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ*)
94 simp12 1205 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ)
9594rexrd 11231 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ*)
96 ltle 11269 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
9796imp 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98973adantl3 1169 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
99983adant3 1132 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴𝐵)
100 lbicc2 13432 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
10193, 95, 99, 100syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ (𝐴[,]𝐵))
102 funfvima2 7208 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐴 ∈ (𝐴[,]𝐵) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵))))
10320, 101, 102sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)))
104 ubicc2 13433 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
10593, 95, 99, 104syl3anc 1373 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ (𝐴[,]𝐵))
106 funfvima2 7208 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐵 ∈ (𝐴[,]𝐵) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))))
10720, 105, 106sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵)))
108 oveq1 7397 . . . . . . . 8 (𝑥 = (𝐹𝐴) → (𝑥[,]𝑦) = ((𝐹𝐴)[,]𝑦))
109108sseq1d 3981 . . . . . . 7 (𝑥 = (𝐹𝐴) → ((𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
110 oveq2 7398 . . . . . . . 8 (𝑦 = (𝐹𝐵) → ((𝐹𝐴)[,]𝑦) = ((𝐹𝐴)[,](𝐹𝐵)))
111110sseq1d 3981 . . . . . . 7 (𝑦 = (𝐹𝐵) → (((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
112109, 111rspc2v 3602 . . . . . 6 (((𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
113103, 107, 112syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
11491, 113mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
115 ioossicc 13401 . . . . . . . 8 ((𝐹𝐴)(,)(𝐹𝐵)) ⊆ ((𝐹𝐴)[,](𝐹𝐵))
116115sseli 3945 . . . . . . 7 (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1171163ad2ant3 1135 . . . . . 6 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1181173ad2ant3 1135 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1191183ad2ant3 1135 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
120114, 119sseldd 3950 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ (𝐹 “ (𝐴[,]𝐵)))
121 fvelima 6929 . . 3 ((Fun 𝐹𝑈 ∈ (𝐹 “ (𝐴[,]𝐵))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
1226, 120, 121syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
123 simpl1 1192 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*)
124123a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*))
125 simprr 772 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) = 𝑈)
12624, 103sseldd 3950 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ)
127 simp333 1329 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))
128126rexrd 11231 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ*)
12924, 107sseldd 3950 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ)
130129rexrd 11231 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ*)
131 elioo2 13354 . . . . . . . . . . . . . . . . 17 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
132128, 130, 131syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
133127, 132mpbid 232 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
134133simp2d 1143 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) < 𝑈)
135126, 134gtned 11316 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐴))
136135adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐴))
137125, 136eqnetrd 2993 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐴))
138137neneqd 2931 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐴))
139 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
140138, 139nsyl 140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐴)
141 simp13 1206 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ℝ)
142133simp3d 1144 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 < (𝐹𝐵))
143141, 142ltned 11317 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐵))
144143adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐵))
145125, 144eqnetrd 2993 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐵))
146145neneqd 2931 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐵))
147 fveq2 6861 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
148146, 147nsyl 140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐵)
149 simprl3 1221 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))
150140, 148, 149ecase13d 36308 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐴 < 𝑥𝑥 < 𝐵))
151150ex 412 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝐴 < 𝑥𝑥 < 𝐵)))
152124, 151jcad 512 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵))))
153 3anass 1094 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
154152, 153imbitrrdi 252 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
155 rexr 11227 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
156 rexr 11227 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
157 elicc3 36312 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
158155, 156, 157syl2an 596 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1591583adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1601593ad2ant1 1133 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
161160anbi1d 631 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) ↔ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)))
162 elioo1 13353 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
163155, 156, 162syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1641633adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1651643ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
166154, 161, 1653imtr4d 294 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ (𝐴(,)𝐵)))
167 simpr 484 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈)
168167a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈))
169166, 168jcad 512 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹𝑥) = 𝑈)))
170169reximdv2 3144 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈 → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈))
171122, 170mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  wss 3917   cuni 4874   class class class wbr 5110  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Fun wfun 6508  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  *cxr 11214   < clt 11215  cle 11216  (,)cioo 13313  [,]cicc 13316  t crest 17390  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  Topctop 22787  TopOnctopon 22804   Cn ccn 23118  Conncconn 23305  cnccncf 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-cn 23121  df-cnp 23122  df-conn 23306  df-xms 24215  df-ms 24216  df-cncf 24778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator