Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ivthALT Structured version   Visualization version   GIF version

Theorem ivthALT 36274
Description: An alternate proof of the Intermediate Value Theorem ivth 25392 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ivthALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑈

Proof of Theorem ivthALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp31 1209 . . . . . 6 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
2 cncff 24822 . . . . . 6 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
31, 2syl 17 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
4 ffun 6705 . . . . 5 (𝐹:𝐷⟶ℂ → Fun 𝐹)
53, 4syl 17 . . . 4 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → Fun 𝐹)
653ad2ant3 1135 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → Fun 𝐹)
7 iccconn 24755 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
873adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
983ad2ant1 1133 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
10 simpr1 1194 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
1110, 2syl 17 . . . . . . . . . . . . 13 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
1211anim2i 617 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ 𝐷 ∧ (𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
13123impb 1114 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
14133ad2ant3 1135 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
154adantl 481 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → Fun 𝐹)
16 fdm 6711 . . . . . . . . . . . . 13 (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷)
1716sseq2d 3989 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℂ → ((𝐴[,]𝐵) ⊆ dom 𝐹 ↔ (𝐴[,]𝐵) ⊆ 𝐷))
1817biimparc 479 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (𝐴[,]𝐵) ⊆ dom 𝐹)
1915, 18jca 511 . . . . . . . . . 10 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
2014, 19syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
21 fores 6796 . . . . . . . . 9 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
2220, 21syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
23 retop 24685 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
24 simp332 1327 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ)
25 uniretop 24686 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
2625restuni 23085 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
2723, 24, 26sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
28 foeq3 6784 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
3022, 29mpbid 232 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
31 simp331 1326 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (𝐷cn→ℂ))
32 ssid 3979 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
33 eqid 2734 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2734 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
3533cnfldtop 24707 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
3633cnfldtopon 24706 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736toponunii 22839 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
3837restid 17432 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3935, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
4039eqcomi 2743 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4133, 34, 40cncfcn 24839 . . . . . . . . . . . . . . 15 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4232, 41mpan2 691 . . . . . . . . . . . . . 14 (𝐷 ⊆ ℂ → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
43423ad2ant2 1134 . . . . . . . . . . . . 13 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
44433ad2ant3 1135 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4531, 44eleqtrd 2835 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
46 simp31 1209 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ 𝐷)
47 simp32 1210 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ⊆ ℂ)
48 resttopon 23084 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
4936, 47, 48sylancr 587 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
50 toponuni 22837 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5149, 50syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5246, 51sseqtrd 3993 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷))
53 eqid 2734 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
5453cnrest 23208 . . . . . . . . . . 11 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)) ∧ (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷)) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5545, 52, 54syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5635a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ Top)
57 cnex 11202 . . . . . . . . . . . . . 14 ℂ ∈ V
58 ssexg 5290 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ ℂ ∈ V) → 𝐷 ∈ V)
5947, 57, 58sylancl 586 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ∈ V)
60 restabs 23088 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ 𝐷𝐷 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
6156, 46, 59, 60syl3anc 1372 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
62 iccssre 13435 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63623adant3 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
64633ad2ant1 1133 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ℝ)
65 eqid 2734 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (topGen‘ran (,))
6633, 65rerest 24728 . . . . . . . . . . . . 13 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6764, 66syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6861, 67eqtrd 2769 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6968oveq1d 7414 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7055, 69eleqtrd 2835 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7136a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
72 df-ima 5664 . . . . . . . . . . . 12 (𝐹 “ (𝐴[,]𝐵)) = ran (𝐹 ↾ (𝐴[,]𝐵))
7372eqimss2i 4018 . . . . . . . . . . 11 ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))
7473a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
75 ax-resscn 11178 . . . . . . . . . . 11 ℝ ⊆ ℂ
7624, 75sstrdi 3969 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ)
77 cnrest2 23209 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7871, 74, 76, 77syl3anc 1372 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7970, 78mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8033, 65rerest 24728 . . . . . . . . . 10 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8124, 80syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8281oveq2d 7415 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8379, 82eleqtrd 2835 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
84 eqid 2734 . . . . . . . 8 ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))
8584cnconn 23345 . . . . . . 7 ((((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ∧ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∧ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
869, 30, 83, 85syl3anc 1372 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
87 reconn 24753 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
88873ad2ant2 1134 . . . . . . . 8 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
89883ad2ant3 1135 . . . . . . 7 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
90893ad2ant3 1135 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
9186, 90mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))
92 simp11 1203 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ)
9392rexrd 11277 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ*)
94 simp12 1204 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ)
9594rexrd 11277 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ*)
96 ltle 11315 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
9796imp 406 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98973adantl3 1168 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
99983adant3 1132 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴𝐵)
100 lbicc2 13470 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
10193, 95, 99, 100syl3anc 1372 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ (𝐴[,]𝐵))
102 funfvima2 7219 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐴 ∈ (𝐴[,]𝐵) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵))))
10320, 101, 102sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)))
104 ubicc2 13471 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
10593, 95, 99, 104syl3anc 1372 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ (𝐴[,]𝐵))
106 funfvima2 7219 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐵 ∈ (𝐴[,]𝐵) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))))
10720, 105, 106sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵)))
108 oveq1 7406 . . . . . . . 8 (𝑥 = (𝐹𝐴) → (𝑥[,]𝑦) = ((𝐹𝐴)[,]𝑦))
109108sseq1d 3988 . . . . . . 7 (𝑥 = (𝐹𝐴) → ((𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
110 oveq2 7407 . . . . . . . 8 (𝑦 = (𝐹𝐵) → ((𝐹𝐴)[,]𝑦) = ((𝐹𝐴)[,](𝐹𝐵)))
111110sseq1d 3988 . . . . . . 7 (𝑦 = (𝐹𝐵) → (((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
112109, 111rspc2v 3610 . . . . . 6 (((𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
113103, 107, 112syl2anc 584 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
11491, 113mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
115 ioossicc 13439 . . . . . . . 8 ((𝐹𝐴)(,)(𝐹𝐵)) ⊆ ((𝐹𝐴)[,](𝐹𝐵))
116115sseli 3952 . . . . . . 7 (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1171163ad2ant3 1135 . . . . . 6 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1181173ad2ant3 1135 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1191183ad2ant3 1135 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
120114, 119sseldd 3957 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ (𝐹 “ (𝐴[,]𝐵)))
121 fvelima 6940 . . 3 ((Fun 𝐹𝑈 ∈ (𝐹 “ (𝐴[,]𝐵))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
1226, 120, 121syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
123 simpl1 1191 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*)
124123a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*))
125 simprr 772 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) = 𝑈)
12624, 103sseldd 3957 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ)
127 simp333 1328 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))
128126rexrd 11277 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ*)
12924, 107sseldd 3957 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ)
130129rexrd 11277 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ*)
131 elioo2 13394 . . . . . . . . . . . . . . . . 17 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
132128, 130, 131syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
133127, 132mpbid 232 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
134133simp2d 1143 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) < 𝑈)
135126, 134gtned 11362 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐴))
136135adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐴))
137125, 136eqnetrd 2998 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐴))
138137neneqd 2936 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐴))
139 fveq2 6872 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
140138, 139nsyl 140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐴)
141 simp13 1205 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ℝ)
142133simp3d 1144 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 < (𝐹𝐵))
143141, 142ltned 11363 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐵))
144143adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐵))
145125, 144eqnetrd 2998 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐵))
146145neneqd 2936 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐵))
147 fveq2 6872 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
148146, 147nsyl 140 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐵)
149 simprl3 1220 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))
150140, 148, 149ecase13d 36252 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐴 < 𝑥𝑥 < 𝐵))
151150ex 412 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝐴 < 𝑥𝑥 < 𝐵)))
152124, 151jcad 512 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵))))
153 3anass 1094 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
154152, 153imbitrrdi 252 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
155 rexr 11273 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
156 rexr 11273 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
157 elicc3 36256 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
158155, 156, 157syl2an 596 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1591583adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1601593ad2ant1 1133 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
161160anbi1d 631 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) ↔ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)))
162 elioo1 13393 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
163155, 156, 162syl2an 596 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1641633adant3 1132 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1651643ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
166154, 161, 1653imtr4d 294 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ (𝐴(,)𝐵)))
167 simpr 484 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈)
168167a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈))
169166, 168jcad 512 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹𝑥) = 𝑈)))
170169reximdv2 3148 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈 → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈))
171122, 170mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wral 3050  wrex 3059  Vcvv 3457  wss 3924   cuni 4880   class class class wbr 5116  dom cdm 5651  ran crn 5652  cres 5653  cima 5654  Fun wfun 6521  wf 6523  ontowfo 6525  cfv 6527  (class class class)co 7399  cc 11119  cr 11120  *cxr 11260   < clt 11261  cle 11262  (,)cioo 13353  [,]cicc 13356  t crest 17419  TopOpenctopn 17420  topGenctg 17436  fldccnfld 21300  Topctop 22816  TopOnctopon 22833   Cn ccn 23147  Conncconn 23334  cnccncf 24805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fi 9417  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-q 12957  df-rp 13001  df-xneg 13120  df-xadd 13121  df-xmul 13122  df-ioo 13357  df-ico 13359  df-icc 13360  df-fz 13514  df-seq 14009  df-exp 14069  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17214  df-plusg 17269  df-mulr 17270  df-starv 17271  df-tset 17275  df-ple 17276  df-ds 17278  df-unif 17279  df-rest 17421  df-topn 17422  df-topgen 17442  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-cnfld 21301  df-top 22817  df-topon 22834  df-topsp 22856  df-bases 22869  df-cld 22942  df-cn 23150  df-cnp 23151  df-conn 23335  df-xms 24244  df-ms 24245  df-cncf 24807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator