Step | Hyp | Ref
| Expression |
1 | | simp31 1207 |
. . . . . 6
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
2 | | cncff 23962 |
. . . . . 6
⊢ (𝐹 ∈ (𝐷–cn→ℂ) → 𝐹:𝐷⟶ℂ) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → 𝐹:𝐷⟶ℂ) |
4 | | ffun 6587 |
. . . . 5
⊢ (𝐹:𝐷⟶ℂ → Fun 𝐹) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → Fun 𝐹) |
6 | 5 | 3ad2ant3 1133 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → Fun 𝐹) |
7 | | iccconn 23899 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) →
((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn) |
8 | 7 | 3adant3 1130 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) →
((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn) |
9 | 8 | 3ad2ant1 1131 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((topGen‘ran (,))
↾t (𝐴[,]𝐵)) ∈ Conn) |
10 | | simpr1 1192 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
11 | 10, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → 𝐹:𝐷⟶ℂ) |
12 | 11 | anim2i 616 |
. . . . . . . . . . . 12
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ (𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐹:𝐷⟶ℂ)) |
13 | 12 | 3impb 1113 |
. . . . . . . . . . 11
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐹:𝐷⟶ℂ)) |
14 | 13 | 3ad2ant3 1133 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐹:𝐷⟶ℂ)) |
15 | 4 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐹:𝐷⟶ℂ) → Fun 𝐹) |
16 | | fdm 6593 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷) |
17 | 16 | sseq2d 3949 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐷⟶ℂ → ((𝐴[,]𝐵) ⊆ dom 𝐹 ↔ (𝐴[,]𝐵) ⊆ 𝐷)) |
18 | 17 | biimparc 479 |
. . . . . . . . . . 11
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐹:𝐷⟶ℂ) → (𝐴[,]𝐵) ⊆ dom 𝐹) |
19 | 15, 18 | jca 511 |
. . . . . . . . . 10
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐹:𝐷⟶ℂ) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹)) |
20 | 14, 19 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹)) |
21 | | fores 6682 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵))) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵))) |
23 | | retop 23831 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) ∈ Top |
24 | | simp332 1325 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ) |
25 | | uniretop 23832 |
. . . . . . . . . . 11
⊢ ℝ =
∪ (topGen‘ran (,)) |
26 | 25 | restuni 22221 |
. . . . . . . . . 10
⊢
(((topGen‘ran (,)) ∈ Top ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ) → (𝐹 “ (𝐴[,]𝐵)) = ∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))) |
27 | 23, 24, 26 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) = ∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))) |
28 | | foeq3 6670 |
. . . . . . . . 9
⊢ ((𝐹 “ (𝐴[,]𝐵)) = ∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))) |
29 | 27, 28 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))) |
30 | 22, 29 | mpbid 231 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))) |
31 | | simp331 1324 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐹 ∈ (𝐷–cn→ℂ)) |
32 | | ssid 3939 |
. . . . . . . . . . . . . . 15
⊢ ℂ
⊆ ℂ |
33 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
34 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
((TopOpen‘ℂfld) ↾t 𝐷) =
((TopOpen‘ℂfld) ↾t 𝐷) |
35 | 33 | cnfldtop 23853 |
. . . . . . . . . . . . . . . . . 18
⊢
(TopOpen‘ℂfld) ∈ Top |
36 | 33 | cnfldtopon 23852 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
37 | 36 | toponunii 21973 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℂ =
∪
(TopOpen‘ℂfld) |
38 | 37 | restid 17061 |
. . . . . . . . . . . . . . . . . 18
⊢
((TopOpen‘ℂfld) ∈ Top →
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld)) |
39 | 35, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢
((TopOpen‘ℂfld) ↾t ℂ) =
(TopOpen‘ℂfld) |
40 | 39 | eqcomi 2747 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
41 | 33, 34, 40 | cncfcn 23979 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
42 | 32, 41 | mpan2 687 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ⊆ ℂ → (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
43 | 42 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
44 | 43 | 3ad2ant3 1133 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐷–cn→ℂ) =
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
45 | 31, 44 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝐷) Cn
(TopOpen‘ℂfld))) |
46 | | simp31 1207 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐴[,]𝐵) ⊆ 𝐷) |
47 | | simp32 1208 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐷 ⊆ ℂ) |
48 | | resttopon 22220 |
. . . . . . . . . . . . . 14
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ 𝐷 ⊆ ℂ)
→ ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
49 | 36, 47, 48 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷)) |
50 | | toponuni 21971 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) → 𝐷 = ∪
((TopOpen‘ℂfld) ↾t 𝐷)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐷 = ∪
((TopOpen‘ℂfld) ↾t 𝐷)) |
52 | 46, 51 | sseqtrd 3957 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐴[,]𝐵) ⊆ ∪
((TopOpen‘ℂfld) ↾t 𝐷)) |
53 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ ((TopOpen‘ℂfld)
↾t 𝐷) =
∪ ((TopOpen‘ℂfld)
↾t 𝐷) |
54 | 53 | cnrest 22344 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈
(((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld))
∧ (𝐴[,]𝐵) ⊆ ∪ ((TopOpen‘ℂfld)
↾t 𝐷))
→ (𝐹 ↾ (𝐴[,]𝐵)) ∈
((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn
(TopOpen‘ℂfld))) |
55 | 45, 52, 54 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈
((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn
(TopOpen‘ℂfld))) |
56 | 35 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
(TopOpen‘ℂfld) ∈ Top) |
57 | | cnex 10883 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
58 | | ssexg 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝐷 ⊆ ℂ ∧ ℂ
∈ V) → 𝐷 ∈
V) |
59 | 47, 57, 58 | sylancl 585 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐷 ∈ V) |
60 | | restabs 22224 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ∈ V) →
(((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,]𝐵))) |
61 | 56, 46, 59, 60 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
(((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld)
↾t (𝐴[,]𝐵))) |
62 | | iccssre 13090 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
63 | 62 | 3adant3 1130 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
64 | 63 | 3ad2ant1 1131 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐴[,]𝐵) ⊆ ℝ) |
65 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(topGen‘ran (,)) = (topGen‘ran (,)) |
66 | 33, 65 | rerest 23873 |
. . . . . . . . . . . . 13
⊢ ((𝐴[,]𝐵) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
67 | 64, 66 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
68 | 61, 67 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
(((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,))
↾t (𝐴[,]𝐵))) |
69 | 68 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld))
= (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn
(TopOpen‘ℂfld))) |
70 | 55, 69 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn
(TopOpen‘ℂfld))) |
71 | 36 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ)) |
72 | | df-ima 5593 |
. . . . . . . . . . . 12
⊢ (𝐹 “ (𝐴[,]𝐵)) = ran (𝐹 ↾ (𝐴[,]𝐵)) |
73 | 72 | eqimss2i 3976 |
. . . . . . . . . . 11
⊢ ran
(𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)) |
74 | 73 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))) |
75 | | ax-resscn 10859 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
76 | 24, 75 | sstrdi 3929 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ) |
77 | | cnrest2 22345 |
. . . . . . . . . 10
⊢
(((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
∧ ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld))
↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld)
↾t (𝐹
“ (𝐴[,]𝐵)))))) |
78 | 71, 74, 76, 77 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld))
↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld)
↾t (𝐹
“ (𝐴[,]𝐵)))))) |
79 | 70, 78 | mpbid 231 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld)
↾t (𝐹
“ (𝐴[,]𝐵))))) |
80 | 33, 65 | rerest 23873 |
. . . . . . . . . 10
⊢ ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ →
((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵)))) |
81 | 24, 80 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) →
((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵)))) |
82 | 81 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld)
↾t (𝐹
“ (𝐴[,]𝐵)))) = (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))))) |
83 | 79, 82 | eleqtrd 2841 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))))) |
84 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) = ∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) |
85 | 84 | cnconn 22481 |
. . . . . . 7
⊢
((((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ∧ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→∪
((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∧ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,))
↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))))) → ((topGen‘ran
(,)) ↾t (𝐹
“ (𝐴[,]𝐵))) ∈
Conn) |
86 | 9, 30, 83, 85 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))) ∈
Conn) |
87 | | reconn 23897 |
. . . . . . . . 9
⊢ ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ →
(((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
88 | 87 | 3ad2ant2 1132 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))) → (((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))) ∈ Conn ↔
∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
89 | 88 | 3ad2ant3 1133 |
. . . . . . 7
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → (((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))) ∈ Conn ↔
∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
90 | 89 | 3ad2ant3 1133 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (((topGen‘ran (,))
↾t (𝐹
“ (𝐴[,]𝐵))) ∈ Conn ↔
∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
91 | 86, 90 | mpbid 231 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))) |
92 | | simp11 1201 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐴 ∈ ℝ) |
93 | 92 | rexrd 10956 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐴 ∈
ℝ*) |
94 | | simp12 1202 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐵 ∈ ℝ) |
95 | 94 | rexrd 10956 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐵 ∈
ℝ*) |
96 | | ltle 10994 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → 𝐴 ≤ 𝐵)) |
97 | 96 | imp 406 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
98 | 97 | 3adantl3 1166 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
99 | 98 | 3adant3 1130 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐴 ≤ 𝐵) |
100 | | lbicc2 13125 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
101 | 93, 95, 99, 100 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐴 ∈ (𝐴[,]𝐵)) |
102 | | funfvima2 7089 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐴 ∈ (𝐴[,]𝐵) → (𝐹‘𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)))) |
103 | 20, 101, 102 | sylc 65 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐴) ∈ (𝐹 “ (𝐴[,]𝐵))) |
104 | | ubicc2 13126 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
105 | 93, 95, 99, 104 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝐵 ∈ (𝐴[,]𝐵)) |
106 | | funfvima2 7089 |
. . . . . . 7
⊢ ((Fun
𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐵 ∈ (𝐴[,]𝐵) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴[,]𝐵)))) |
107 | 20, 105, 106 | sylc 65 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))) |
108 | | oveq1 7262 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝐴) → (𝑥[,]𝑦) = ((𝐹‘𝐴)[,]𝑦)) |
109 | 108 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝐴) → ((𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹‘𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
110 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝐵) → ((𝐹‘𝐴)[,]𝑦) = ((𝐹‘𝐴)[,](𝐹‘𝐵))) |
111 | 110 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝐵) → (((𝐹‘𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹‘𝐴)[,](𝐹‘𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
112 | 109, 111 | rspc2v 3562 |
. . . . . 6
⊢ (((𝐹‘𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹‘𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹‘𝐴)[,](𝐹‘𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
113 | 103, 107,
112 | syl2anc 583 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹‘𝐴)[,](𝐹‘𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))) |
114 | 91, 113 | mpd 15 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝐹‘𝐴)[,](𝐹‘𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))) |
115 | | ioossicc 13094 |
. . . . . . . 8
⊢ ((𝐹‘𝐴)(,)(𝐹‘𝐵)) ⊆ ((𝐹‘𝐴)[,](𝐹‘𝐵)) |
116 | 115 | sseli 3913 |
. . . . . . 7
⊢ (𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)) → 𝑈 ∈ ((𝐹‘𝐴)[,](𝐹‘𝐵))) |
117 | 116 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))) → 𝑈 ∈ ((𝐹‘𝐴)[,](𝐹‘𝐵))) |
118 | 117 | 3ad2ant3 1133 |
. . . . 5
⊢ (((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)))) → 𝑈 ∈ ((𝐹‘𝐴)[,](𝐹‘𝐵))) |
119 | 118 | 3ad2ant3 1133 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 ∈ ((𝐹‘𝐴)[,](𝐹‘𝐵))) |
120 | 114, 119 | sseldd 3918 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 ∈ (𝐹 “ (𝐴[,]𝐵))) |
121 | | fvelima 6817 |
. . 3
⊢ ((Fun
𝐹 ∧ 𝑈 ∈ (𝐹 “ (𝐴[,]𝐵))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) = 𝑈) |
122 | 6, 120, 121 | syl2anc 583 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) = 𝑈) |
123 | | simpl1 1189 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ*
∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈) → 𝑥 ∈ ℝ*) |
124 | 123 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈) → 𝑥 ∈
ℝ*)) |
125 | | simprr 769 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → (𝐹‘𝑥) = 𝑈) |
126 | 24, 103 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐴) ∈ ℝ) |
127 | | simp333 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))) |
128 | 126 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐴) ∈
ℝ*) |
129 | 24, 107 | sseldd 3918 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐵) ∈ ℝ) |
130 | 129 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐵) ∈
ℝ*) |
131 | | elioo2 13049 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝐴) ∈ ℝ* ∧ (𝐹‘𝐵) ∈ ℝ*) → (𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵)))) |
132 | 128, 130,
131 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵)))) |
133 | 127, 132 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝑈 ∈ ℝ ∧ (𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) |
134 | 133 | simp2d 1141 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝐹‘𝐴) < 𝑈) |
135 | 126, 134 | gtned 11040 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 ≠ (𝐹‘𝐴)) |
136 | 135 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → 𝑈 ≠ (𝐹‘𝐴)) |
137 | 125, 136 | eqnetrd 3010 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → (𝐹‘𝑥) ≠ (𝐹‘𝐴)) |
138 | 137 | neneqd 2947 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → ¬ (𝐹‘𝑥) = (𝐹‘𝐴)) |
139 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
140 | 138, 139 | nsyl 140 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → ¬ 𝑥 = 𝐴) |
141 | | simp13 1203 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 ∈ ℝ) |
142 | 133 | simp3d 1142 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 < (𝐹‘𝐵)) |
143 | 141, 142 | ltned 11041 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → 𝑈 ≠ (𝐹‘𝐵)) |
144 | 143 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → 𝑈 ≠ (𝐹‘𝐵)) |
145 | 125, 144 | eqnetrd 3010 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → (𝐹‘𝑥) ≠ (𝐹‘𝐵)) |
146 | 145 | neneqd 2947 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → ¬ (𝐹‘𝑥) = (𝐹‘𝐵)) |
147 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐵 → (𝐹‘𝑥) = (𝐹‘𝐵)) |
148 | 146, 147 | nsyl 140 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → ¬ 𝑥 = 𝐵) |
149 | | simprl3 1218 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) |
150 | 140, 148,
149 | ecase13d 34429 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) ∧ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈)) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |
151 | 150 | ex 412 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
152 | 124, 151 | jcad 512 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)))) |
153 | | 3anass 1093 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ*
∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
154 | 152, 153 | syl6ibr 251 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈) → (𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
155 | | rexr 10952 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) |
156 | | rexr 10952 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℝ*) |
157 | | elicc3 34433 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)))) |
158 | 155, 156,
157 | syl2an 595 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)))) |
159 | 158 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)))) |
160 | 159 | 3ad2ant1 1131 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)))) |
161 | 160 | anbi1d 629 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑥) = 𝑈) ↔ ((𝑥 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹‘𝑥) = 𝑈))) |
162 | | elioo1 13048 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
163 | 155, 156,
162 | syl2an 595 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
164 | 163 | 3adant3 1130 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
165 | 164 | 3ad2ant1 1131 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ* ∧ 𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) |
166 | 154, 161,
165 | 3imtr4d 293 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑥) = 𝑈) → 𝑥 ∈ (𝐴(,)𝐵))) |
167 | | simpr 484 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑥) = 𝑈) → (𝐹‘𝑥) = 𝑈) |
168 | 167 | a1i 11 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑥) = 𝑈) → (𝐹‘𝑥) = 𝑈)) |
169 | 166, 168 | jcad 512 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹‘𝑥) = 𝑈) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹‘𝑥) = 𝑈))) |
170 | 169 | reximdv2 3198 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → (∃𝑥 ∈ (𝐴[,]𝐵)(𝐹‘𝑥) = 𝑈 → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹‘𝑥) = 𝑈)) |
171 | 122, 170 | mpd 15 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷–cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹‘𝐴)(,)(𝐹‘𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹‘𝑥) = 𝑈) |