Proof of Theorem cdlemk54
| Step | Hyp | Ref
| Expression |
| 1 | | coass 6285 |
. . 3
⊢ ((𝐺 ∘ 𝐼) ∘ 𝑗) = (𝐺 ∘ (𝐼 ∘ 𝑗)) |
| 2 | | csbeq1 3902 |
. . 3
⊢ (((𝐺 ∘ 𝐼) ∘ 𝑗) = (𝐺 ∘ (𝐼 ∘ 𝑗)) → ⦋((𝐺 ∘ 𝐼) ∘ 𝑗) / 𝑔⦌𝑋 = ⦋(𝐺 ∘ (𝐼 ∘ 𝑗)) / 𝑔⦌𝑋) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢
⦋((𝐺
∘ 𝐼) ∘ 𝑗) / 𝑔⦌𝑋 = ⦋(𝐺 ∘ (𝐼 ∘ 𝑗)) / 𝑔⦌𝑋 |
| 4 | | simp1 1137 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
| 5 | | simp21 1207 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇)) |
| 6 | | simp1l 1198 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 7 | | simp22 1208 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → 𝐺 ∈ 𝑇) |
| 8 | | simp31l 1297 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → 𝐼 ∈ 𝑇) |
| 9 | | cdlemk5.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 10 | | cdlemk5.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 11 | 9, 10 | ltrnco 40721 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) → (𝐺 ∘ 𝐼) ∈ 𝑇) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝐺 ∘ 𝐼) ∈ 𝑇) |
| 13 | | simp23 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 14 | | simp32 1211 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → 𝑗 ∈ 𝑇) |
| 15 | | simp333 1329 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))) |
| 16 | 15 | necomd 2996 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘(𝐺 ∘ 𝐼)) ≠ (𝑅‘𝑗)) |
| 17 | | cdlemk5.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
| 18 | | cdlemk5.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 19 | | cdlemk5.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 20 | | cdlemk5.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 21 | | cdlemk5.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 22 | | cdlemk5.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 23 | | cdlemk5.z |
. . . 4
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
| 24 | | cdlemk5.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
| 25 | | cdlemk5.x |
. . . 4
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
| 26 | 17, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25 | cdlemk53 40959 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ (𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑗 ∈ 𝑇 ∧ (𝑅‘(𝐺 ∘ 𝐼)) ≠ (𝑅‘𝑗))) → ⦋((𝐺 ∘ 𝐼) ∘ 𝑗) / 𝑔⦌𝑋 = (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 27 | 4, 5, 12, 13, 14, 16, 26 | syl132anc 1390 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → ⦋((𝐺 ∘ 𝐼) ∘ 𝑗) / 𝑔⦌𝑋 = (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 28 | | simp2 1138 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) |
| 29 | 9, 10 | ltrnco 40721 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐼 ∈ 𝑇 ∧ 𝑗 ∈ 𝑇) → (𝐼 ∘ 𝑗) ∈ 𝑇) |
| 30 | 6, 8, 14, 29 | syl3anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝐼 ∘ 𝑗) ∈ 𝑇) |
| 31 | | simp31r 1298 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝐺) = (𝑅‘𝐼)) |
| 32 | | simp332 1328 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝑗) ≠ (𝑅‘𝐺)) |
| 33 | 32, 31 | neeqtrd 3010 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝑗) ≠ (𝑅‘𝐼)) |
| 34 | 33 | necomd 2996 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝐼) ≠ (𝑅‘𝑗)) |
| 35 | | simp331 1327 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → 𝑗 ≠ ( I ↾ 𝐵)) |
| 36 | 17, 9, 10, 22 | trlcone 40730 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼 ∈ 𝑇 ∧ 𝑗 ∈ 𝑇) ∧ ((𝑅‘𝐼) ≠ (𝑅‘𝑗) ∧ 𝑗 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐼) ≠ (𝑅‘(𝐼 ∘ 𝑗))) |
| 37 | 6, 8, 14, 34, 35, 36 | syl122anc 1381 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝐼) ≠ (𝑅‘(𝐼 ∘ 𝑗))) |
| 38 | 31, 37 | eqnetrd 3008 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (𝑅‘𝐺) ≠ (𝑅‘(𝐼 ∘ 𝑗))) |
| 39 | 17, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25 | cdlemk53 40959 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∘ 𝑗) ∈ 𝑇 ∧ (𝑅‘𝐺) ≠ (𝑅‘(𝐼 ∘ 𝑗)))) → ⦋(𝐺 ∘ (𝐼 ∘ 𝑗)) / 𝑔⦌𝑋 = (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋(𝐼 ∘ 𝑗) / 𝑔⦌𝑋)) |
| 40 | 4, 28, 30, 38, 39 | syl112anc 1376 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → ⦋(𝐺 ∘ (𝐼 ∘ 𝑗)) / 𝑔⦌𝑋 = (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋(𝐼 ∘ 𝑗) / 𝑔⦌𝑋)) |
| 41 | 17, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25 | cdlemk53 40959 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐼 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑗 ∈ 𝑇 ∧ (𝑅‘𝐼) ≠ (𝑅‘𝑗))) → ⦋(𝐼 ∘ 𝑗) / 𝑔⦌𝑋 = (⦋𝐼 / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 42 | 4, 5, 8, 13, 14, 34, 41 | syl132anc 1390 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → ⦋(𝐼 ∘ 𝑗) / 𝑔⦌𝑋 = (⦋𝐼 / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 43 | 42 | coeq2d 5873 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋(𝐼 ∘ 𝑗) / 𝑔⦌𝑋) = (⦋𝐺 / 𝑔⦌𝑋 ∘ (⦋𝐼 / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋))) |
| 44 | | coass 6285 |
. . . 4
⊢
((⦋𝐺 /
𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∘ ⦋𝑗 / 𝑔⦌𝑋) = (⦋𝐺 / 𝑔⦌𝑋 ∘ (⦋𝐼 / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 45 | 43, 44 | eqtr4di 2795 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋(𝐼 ∘ 𝑗) / 𝑔⦌𝑋) = ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 46 | 40, 45 | eqtrd 2777 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → ⦋(𝐺 ∘ (𝐼 ∘ 𝑗)) / 𝑔⦌𝑋 = ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∘ ⦋𝑗 / 𝑔⦌𝑋)) |
| 47 | 3, 27, 46 | 3eqtr3a 2801 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁 ∈ 𝑇) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐼 ∈ 𝑇 ∧ (𝑅‘𝐺) = (𝑅‘𝐼)) ∧ 𝑗 ∈ 𝑇 ∧ (𝑗 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑗) ≠ (𝑅‘𝐺) ∧ (𝑅‘𝑗) ≠ (𝑅‘(𝐺 ∘ 𝐼))))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋 ∘ ⦋𝑗 / 𝑔⦌𝑋) = ((⦋𝐺 / 𝑔⦌𝑋 ∘ ⦋𝐼 / 𝑔⦌𝑋) ∘ ⦋𝑗 / 𝑔⦌𝑋)) |