Step | Hyp | Ref
| Expression |
1 | | cdlemk1.b |
. 2
β’ π΅ = (BaseβπΎ) |
2 | | cdlemk1.l |
. 2
β’ β€ =
(leβπΎ) |
3 | | simp11l 1284 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β πΎ β HL) |
4 | 3 | hllatd 38229 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β πΎ β Lat) |
5 | | simp11r 1285 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β π») |
6 | 3, 5 | jca 512 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (πΎ β HL β§ π β π»)) |
7 | | simp23 1208 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
βπΉ) = (π
βπ)) |
8 | | simp212 1312 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β πΊ β π) |
9 | | simp12 1204 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β πΉ β π) |
10 | | simp13 1205 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π· β π) |
11 | | simp211 1311 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β π) |
12 | | simp331 1326 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
βπ·) β (π
βπΉ)) |
13 | | simp332 1327 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
βπΊ) β (π
βπ·)) |
14 | 13 | necomd 2996 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
βπ·) β (π
βπΊ)) |
15 | 12, 14 | jca 512 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((π
βπ·) β (π
βπΉ) β§ (π
βπ·) β (π
βπΊ))) |
16 | | simp311 1320 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β πΉ β ( I βΎ π΅)) |
17 | | simp313 1322 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β πΊ β ( I βΎ π΅)) |
18 | | simp312 1321 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π· β ( I βΎ π΅)) |
19 | 16, 17, 18 | 3jca 1128 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (πΉ β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅) β§ π· β ( I βΎ π΅))) |
20 | | simp22 1207 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π β π΄ β§ Β¬ π β€ π)) |
21 | | cdlemk1.j |
. . . . 5
β’ β¨ =
(joinβπΎ) |
22 | | cdlemk1.m |
. . . . 5
β’ β§ =
(meetβπΎ) |
23 | | cdlemk1.a |
. . . . 5
β’ π΄ = (AtomsβπΎ) |
24 | | cdlemk1.h |
. . . . 5
β’ π» = (LHypβπΎ) |
25 | | cdlemk1.t |
. . . . 5
β’ π = ((LTrnβπΎ)βπ) |
26 | | cdlemk1.r |
. . . . 5
β’ π
= ((trLβπΎ)βπ) |
27 | | cdlemk1.s |
. . . . 5
β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π
βπ)) β§ ((πβπ) β¨ (π
β(π β β‘πΉ)))))) |
28 | | cdlemk1.o |
. . . . 5
β’ π = (πβπ·) |
29 | | cdlemk1.u |
. . . . 5
β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π
βπ)) β§ ((πβπ) β¨ (π
β(π β β‘π·)))))) |
30 | 1, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29 | cdlemkuat 39732 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π
βπΉ) = (π
βπ) β§ πΊ β π) β§ (πΉ β π β§ π· β π β§ π β π) β§ (((π
βπ·) β (π
βπΉ) β§ (π
βπ·) β (π
βπΊ)) β§ (πΉ β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅) β§ π· β ( I βΎ π΅)) β§ (π β π΄ β§ Β¬ π β€ π))) β ((πβπΊ)βπ) β π΄) |
31 | 6, 7, 8, 9, 10, 11, 15, 19, 20, 30 | syl333anc 1402 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((πβπΊ)βπ) β π΄) |
32 | 1, 23 | atbase 38154 |
. . 3
β’ (((πβπΊ)βπ) β π΄ β ((πβπΊ)βπ) β π΅) |
33 | 31, 32 | syl 17 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((πβπΊ)βπ) β π΅) |
34 | | simp213 1313 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β π) |
35 | | simp333 1328 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
βπ) β (π
βπ·)) |
36 | 35 | necomd 2996 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
βπ·) β (π
βπ)) |
37 | 12, 36 | jca 512 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((π
βπ·) β (π
βπΉ) β§ (π
βπ·) β (π
βπ))) |
38 | | simp32 1210 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β ( I βΎ π΅)) |
39 | 16, 38, 18 | 3jca 1128 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (πΉ β ( I βΎ π΅) β§ π β ( I βΎ π΅) β§ π· β ( I βΎ π΅))) |
40 | 1, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29 | cdlemkuat 39732 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π
βπΉ) = (π
βπ) β§ π β π) β§ (πΉ β π β§ π· β π β§ π β π) β§ (((π
βπ·) β (π
βπΉ) β§ (π
βπ·) β (π
βπ)) β§ (πΉ β ( I βΎ π΅) β§ π β ( I βΎ π΅) β§ π· β ( I βΎ π΅)) β§ (π β π΄ β§ Β¬ π β€ π))) β ((πβπ)βπ) β π΄) |
41 | 6, 7, 34, 9, 10, 11, 37, 39, 20, 40 | syl333anc 1402 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((πβπ)βπ) β π΄) |
42 | 1, 23 | atbase 38154 |
. . . 4
β’ (((πβπ)βπ) β π΄ β ((πβπ)βπ) β π΅) |
43 | 41, 42 | syl 17 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((πβπ)βπ) β π΅) |
44 | | simp22l 1292 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β π΄) |
45 | | cdlemk1.v |
. . . . 5
β’ π = (((πΊβπ) β¨ (πβπ)) β§ ((π
β(πΊ β β‘π·)) β¨ (π
β(π β β‘π·)))) |
46 | 1, 2, 21, 23, 24, 25, 26, 22, 45 | cdlemkvcl 39708 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π· β π β§ πΊ β π β§ π β π) β§ π β π΄) β π β π΅) |
47 | 3, 5, 10, 8, 34, 44, 46 | syl231anc 1390 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β π΅) |
48 | 1, 21 | latjcl 18391 |
. . 3
β’ ((πΎ β Lat β§ ((πβπ)βπ) β π΅ β§ π β π΅) β (((πβπ)βπ) β¨ π) β π΅) |
49 | 4, 43, 47, 48 | syl3anc 1371 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (((πβπ)βπ) β¨ π) β π΅) |
50 | 24, 25 | ltrncnv 39012 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ πΊ β π) β β‘πΊ β π) |
51 | 6, 8, 50 | syl2anc 584 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β β‘πΊ β π) |
52 | 24, 25 | ltrnco 39585 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β π β§ β‘πΊ β π) β (π β β‘πΊ) β π) |
53 | 6, 34, 51, 52 | syl3anc 1371 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π β β‘πΊ) β π) |
54 | 1, 24, 25, 26 | trlcl 39030 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β β‘πΊ) β π) β (π
β(π β β‘πΊ)) β π΅) |
55 | 6, 53, 54 | syl2anc 584 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π
β(π β β‘πΊ)) β π΅) |
56 | 1, 21 | latjcl 18391 |
. . 3
β’ ((πΎ β Lat β§ ((πβπ)βπ) β π΅ β§ (π
β(π β β‘πΊ)) β π΅) β (((πβπ)βπ) β¨ (π
β(π β β‘πΊ))) β π΅) |
57 | 4, 43, 55, 56 | syl3anc 1371 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (((πβπ)βπ) β¨ (π
β(π β β‘πΊ))) β π΅) |
58 | 1, 2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 45 | cdlemk7u 39736 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((πβπΊ)βπ) β€ (((πβπ)βπ) β¨ π)) |
59 | 1, 2, 21, 23, 24, 25, 26, 22, 45 | cdlemk10 39709 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π· β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π)) β π β€ (π
β(π β β‘πΊ))) |
60 | 3, 5, 10, 8, 34, 20, 59 | syl231anc 1390 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β π β€ (π
β(π β β‘πΊ))) |
61 | 1, 2, 21 | latjlej2 18406 |
. . . 4
β’ ((πΎ β Lat β§ (π β π΅ β§ (π
β(π β β‘πΊ)) β π΅ β§ ((πβπ)βπ) β π΅)) β (π β€ (π
β(π β β‘πΊ)) β (((πβπ)βπ) β¨ π) β€ (((πβπ)βπ) β¨ (π
β(π β β‘πΊ))))) |
62 | 4, 47, 55, 43, 61 | syl13anc 1372 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (π β€ (π
β(π β β‘πΊ)) β (((πβπ)βπ) β¨ π) β€ (((πβπ)βπ) β¨ (π
β(π β β‘πΊ))))) |
63 | 60, 62 | mpd 15 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β (((πβπ)βπ) β¨ π) β€ (((πβπ)βπ) β¨ (π
β(π β β‘πΊ)))) |
64 | 1, 2, 4, 33, 49, 57, 58, 63 | lattrd 18398 |
1
β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ π· β π) β§ ((π β π β§ πΊ β π β§ π β π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ)) β§ ((πΉ β ( I βΎ π΅) β§ π· β ( I βΎ π΅) β§ πΊ β ( I βΎ π΅)) β§ π β ( I βΎ π΅) β§ ((π
βπ·) β (π
βπΉ) β§ (π
βπΊ) β (π
βπ·) β§ (π
βπ) β (π
βπ·)))) β ((πβπΊ)βπ) β€ (((πβπ)βπ) β¨ (π
β(π β β‘πΊ)))) |