MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp332 Structured version   Visualization version   GIF version

Theorem simp332 1419
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp332 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp332
StepHypRef Expression
1 simp32 1260 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1158 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-an 385  df-3an 1102
This theorem is referenced by:  ivthALT  32649  dalemclqjt  35413  dath2  35515  cdlema1N  35569  cdleme26eALTN  36140  cdlemk7u  36649  cdlemk11u  36650  cdlemk12u  36651  cdlemk23-3  36681  cdlemk33N  36688  cdlemk11ta  36708  cdlemk11tc  36724  cdlemk54  36737
  Copyright terms: Public domain W3C validator