MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp332 Structured version   Visualization version   GIF version

Theorem simp332 1326
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp332 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp332
StepHypRef Expression
1 simp32 1209 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1134 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  ivthALT  34524  dalemclqjt  37649  dath2  37751  cdlema1N  37805  cdleme26eALTN  38375  cdlemk7u  38884  cdlemk11u  38885  cdlemk12u  38886  cdlemk23-3  38916  cdlemk33N  38923  cdlemk11ta  38943  cdlemk11tc  38959  cdlemk54  38972
  Copyright terms: Public domain W3C validator