MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp332 Structured version   Visualization version   GIF version

Theorem simp332 1324
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp332 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simp332
StepHypRef Expression
1 simp32 1207 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant3 1132 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  ivthALT  34107  dalemclqjt  37245  dath2  37347  cdlema1N  37401  cdleme26eALTN  37971  cdlemk7u  38480  cdlemk11u  38481  cdlemk12u  38482  cdlemk23-3  38512  cdlemk33N  38519  cdlemk11ta  38539  cdlemk11tc  38555  cdlemk54  38568
  Copyright terms: Public domain W3C validator