|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssel2 | Structured version Visualization version GIF version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) | 
| Ref | Expression | 
|---|---|
| ssel2 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3976 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐵) | 
| Copyright terms: Public domain | W3C validator |