Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALT | Structured version Visualization version GIF version |
Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4738. This theorem was automatically generated from snssiALTVD 42336 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snssiALT | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4574 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | syl5bi 241 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) |
4 | 3 | alrimiv 1931 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) |
5 | dfss2 3903 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |