Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALT | Structured version Visualization version GIF version |
Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4741. This theorem was automatically generated from snssiALTVD 42447 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snssiALT | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 4577 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
2 | eleq1a 2834 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | syl5bi 241 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) |
4 | 3 | alrimiv 1930 | . 2 ⊢ (𝐴 ∈ 𝐵 → ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) |
5 | dfss2 3907 | . 2 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |