| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spc2d | Structured version Visualization version GIF version | ||
| Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| Ref | Expression |
|---|---|
| spc2ed.x | ⊢ Ⅎ𝑥𝜒 |
| spc2ed.y | ⊢ Ⅎ𝑦𝜒 |
| spc2ed.1 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| spc2d | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∀𝑥∀𝑦𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nalexn 1829 | . . 3 ⊢ (¬ ∀𝑥∀𝑦𝜓 ↔ ∃𝑥∃𝑦 ¬ 𝜓) | |
| 2 | 1 | con1bii 356 | . 2 ⊢ (¬ ∃𝑥∃𝑦 ¬ 𝜓 ↔ ∀𝑥∀𝑦𝜓) |
| 3 | spc2ed.x | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
| 4 | 3 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜒 |
| 5 | spc2ed.y | . . . . 5 ⊢ Ⅎ𝑦𝜒 | |
| 6 | 5 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜒 |
| 7 | spc2ed.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | |
| 8 | 7 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 9 | 4, 6, 8 | spc2ed 3551 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (¬ 𝜒 → ∃𝑥∃𝑦 ¬ 𝜓)) |
| 10 | 9 | con1d 145 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (¬ ∃𝑥∃𝑦 ¬ 𝜓 → 𝜒)) |
| 11 | 2, 10 | biimtrrid 243 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∀𝑥∀𝑦𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-clel 2806 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |