Proof of Theorem spc2ed
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elisset 2823 | . . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | 
| 2 |  | elisset 2823 | . . . 4
⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) | 
| 3 | 1, 2 | anim12i 613 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | 
| 4 |  | exdistrv 1955 | . . 3
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) | 
| 5 | 3, 4 | sylibr 234 | . 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) | 
| 6 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑥𝜑 | 
| 7 |  | spc2ed.x | . . . . 5
⊢
Ⅎ𝑥𝜒 | 
| 8 | 6, 7 | nfan 1899 | . . . 4
⊢
Ⅎ𝑥(𝜑 ∧ 𝜒) | 
| 9 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑦𝜑 | 
| 10 |  | spc2ed.y | . . . . . 6
⊢
Ⅎ𝑦𝜒 | 
| 11 | 9, 10 | nfan 1899 | . . . . 5
⊢
Ⅎ𝑦(𝜑 ∧ 𝜒) | 
| 12 |  | anass 468 | . . . . . . . 8
⊢ (((𝜒 ∧ 𝜑) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝜒 ∧ (𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)))) | 
| 13 |  | ancom 460 | . . . . . . . . 9
⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | 
| 14 | 13 | anbi1i 624 | . . . . . . . 8
⊢ (((𝜒 ∧ 𝜑) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) | 
| 15 | 12, 14 | bitr3i 277 | . . . . . . 7
⊢ ((𝜒 ∧ (𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) | 
| 16 |  | spc2ed.1 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) | 
| 17 | 16 | biimparc 479 | . . . . . . 7
⊢ ((𝜒 ∧ (𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) → 𝜓) | 
| 18 | 15, 17 | sylbir 235 | . . . . . 6
⊢ (((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝜓) | 
| 19 | 18 | ex 412 | . . . . 5
⊢ ((𝜑 ∧ 𝜒) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) | 
| 20 | 11, 19 | eximd 2216 | . . . 4
⊢ ((𝜑 ∧ 𝜒) → (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) | 
| 21 | 8, 20 | eximd 2216 | . . 3
⊢ ((𝜑 ∧ 𝜒) → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) | 
| 22 | 21 | impancom 451 | . 2
⊢ ((𝜑 ∧ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜒 → ∃𝑥∃𝑦𝜓)) | 
| 23 | 5, 22 | sylan2 593 | 1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) |