Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2fun Structured version   Visualization version   GIF version

Theorem setrec2fun 49211
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is a subclass of all classes 𝐶 that are closed under 𝐹. Taken together, Theorems setrec1 49210 and setrec2v 49215 say that setrecs(𝐹) is the minimal class closed under 𝐹.

We express this by saying that if 𝐹 respects the relation and 𝐶 is closed under 𝐹, then 𝐵𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7874) to the other class. (Contributed by Emmett Weisz, 15-Feb-2021.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec2fun.1 𝑎𝐹
setrec2fun.2 𝐵 = setrecs(𝐹)
setrec2fun.3 Fun 𝐹
setrec2fun.4 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2fun (𝜑𝐵𝐶)
Distinct variable group:   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐹(𝑎)

Proof of Theorem setrec2fun
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2fun.2 . . 3 𝐵 = setrecs(𝐹)
2 df-setrecs 49203 . . 3 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
31, 2eqtri 2765 . 2 𝐵 = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
4 eqid 2737 . . . . . 6 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
5 vex 3484 . . . . . . 7 𝑥 ∈ V
65a1i 11 . . . . . 6 (𝜑𝑥 ∈ V)
74, 6setrec1lem1 49206 . . . . 5 (𝜑 → (𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} ↔ ∀𝑧(∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑥𝑧)))
8 id 22 . . . . . . . . . . . . . . 15 (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → 𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))
9 inss1 4237 . . . . . . . . . . . . . . 15 (𝐶 (𝐹 “ 𝒫 𝑥)) ⊆ 𝐶
108, 9sstrdi 3996 . . . . . . . . . . . . . 14 (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → 𝑤𝐶)
11 setrec2fun.4 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
12 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑎 𝑤𝐶
13 setrec2fun.1 . . . . . . . . . . . . . . . . . . 19 𝑎𝐹
14 nfcv 2905 . . . . . . . . . . . . . . . . . . 19 𝑎𝑤
1513, 14nffv 6916 . . . . . . . . . . . . . . . . . 18 𝑎(𝐹𝑤)
16 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑎𝐶
1715, 16nfss 3976 . . . . . . . . . . . . . . . . 17 𝑎(𝐹𝑤) ⊆ 𝐶
1812, 17nfim 1896 . . . . . . . . . . . . . . . 16 𝑎(𝑤𝐶 → (𝐹𝑤) ⊆ 𝐶)
19 sseq1 4009 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑤 → (𝑎𝐶𝑤𝐶))
20 fveq2 6906 . . . . . . . . . . . . . . . . . . 19 (𝑎 = 𝑤 → (𝐹𝑎) = (𝐹𝑤))
2120sseq1d 4015 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑤 → ((𝐹𝑎) ⊆ 𝐶 ↔ (𝐹𝑤) ⊆ 𝐶))
2219, 21imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑤 → ((𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶) ↔ (𝑤𝐶 → (𝐹𝑤) ⊆ 𝐶)))
2322biimpd 229 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑤 → ((𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶) → (𝑤𝐶 → (𝐹𝑤) ⊆ 𝐶)))
2418, 23spimfv 2239 . . . . . . . . . . . . . . 15 (∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶) → (𝑤𝐶 → (𝐹𝑤) ⊆ 𝐶))
2511, 24syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝐶 → (𝐹𝑤) ⊆ 𝐶))
2610, 25syl5 34 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ 𝐶))
2726imp 406 . . . . . . . . . . . 12 ((𝜑𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))) → (𝐹𝑤) ⊆ 𝐶)
28273adant2 1132 . . . . . . . . . . 11 ((𝜑𝑤𝑥𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))) → (𝐹𝑤) ⊆ 𝐶)
29 velpw 4605 . . . . . . . . . . . . . . 15 (𝑤 ∈ 𝒫 𝑥𝑤𝑥)
30 eliman0 6946 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ 𝒫 𝑥 ∧ ¬ (𝐹𝑤) = ∅) → (𝐹𝑤) ∈ (𝐹 “ 𝒫 𝑥))
3130ex 412 . . . . . . . . . . . . . . 15 (𝑤 ∈ 𝒫 𝑥 → (¬ (𝐹𝑤) = ∅ → (𝐹𝑤) ∈ (𝐹 “ 𝒫 𝑥)))
3229, 31sylbir 235 . . . . . . . . . . . . . 14 (𝑤𝑥 → (¬ (𝐹𝑤) = ∅ → (𝐹𝑤) ∈ (𝐹 “ 𝒫 𝑥)))
33 elssuni 4937 . . . . . . . . . . . . . 14 ((𝐹𝑤) ∈ (𝐹 “ 𝒫 𝑥) → (𝐹𝑤) ⊆ (𝐹 “ 𝒫 𝑥))
3432, 33syl6 35 . . . . . . . . . . . . 13 (𝑤𝑥 → (¬ (𝐹𝑤) = ∅ → (𝐹𝑤) ⊆ (𝐹 “ 𝒫 𝑥)))
35 id 22 . . . . . . . . . . . . . 14 ((𝐹𝑤) = ∅ → (𝐹𝑤) = ∅)
36 0ss 4400 . . . . . . . . . . . . . 14 ∅ ⊆ (𝐹 “ 𝒫 𝑥)
3735, 36eqsstrdi 4028 . . . . . . . . . . . . 13 ((𝐹𝑤) = ∅ → (𝐹𝑤) ⊆ (𝐹 “ 𝒫 𝑥))
3834, 37pm2.61d2 181 . . . . . . . . . . . 12 (𝑤𝑥 → (𝐹𝑤) ⊆ (𝐹 “ 𝒫 𝑥))
39383ad2ant2 1135 . . . . . . . . . . 11 ((𝜑𝑤𝑥𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))) → (𝐹𝑤) ⊆ (𝐹 “ 𝒫 𝑥))
4028, 39ssind 4241 . . . . . . . . . 10 ((𝜑𝑤𝑥𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))
41403exp 1120 . . . . . . . . 9 (𝜑 → (𝑤𝑥 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))))
4241alrimiv 1927 . . . . . . . 8 (𝜑 → ∀𝑤(𝑤𝑥 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))))
43 setrec2fun.3 . . . . . . . . . . . 12 Fun 𝐹
445pwex 5380 . . . . . . . . . . . . 13 𝒫 𝑥 ∈ V
4544funimaex 6655 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ 𝒫 𝑥) ∈ V)
4643, 45ax-mp 5 . . . . . . . . . . 11 (𝐹 “ 𝒫 𝑥) ∈ V
4746uniex 7761 . . . . . . . . . 10 (𝐹 “ 𝒫 𝑥) ∈ V
4847inex2 5318 . . . . . . . . 9 (𝐶 (𝐹 “ 𝒫 𝑥)) ∈ V
49 sseq2 4010 . . . . . . . . . . . . 13 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝑤𝑧𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))))
50 sseq2 4010 . . . . . . . . . . . . 13 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → ((𝐹𝑤) ⊆ 𝑧 ↔ (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))))
5149, 50imbi12d 344 . . . . . . . . . . . 12 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → ((𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))))
5251imbi2d 340 . . . . . . . . . . 11 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → ((𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ (𝑤𝑥 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))))))
5352albidv 1920 . . . . . . . . . 10 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → (∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑥 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))))))
54 sseq2 4010 . . . . . . . . . 10 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝑥𝑧𝑥 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))))
5553, 54imbi12d 344 . . . . . . . . 9 (𝑧 = (𝐶 (𝐹 “ 𝒫 𝑥)) → ((∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑥𝑧) ↔ (∀𝑤(𝑤𝑥 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))) → 𝑥 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))))
5648, 55spcv 3605 . . . . . . . 8 (∀𝑧(∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑥𝑧) → (∀𝑤(𝑤𝑥 → (𝑤 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)) → (𝐹𝑤) ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))) → 𝑥 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥))))
5742, 56mpan9 506 . . . . . . 7 ((𝜑 ∧ ∀𝑧(∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑥𝑧)) → 𝑥 ⊆ (𝐶 (𝐹 “ 𝒫 𝑥)))
5857, 9sstrdi 3996 . . . . . 6 ((𝜑 ∧ ∀𝑧(∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑥𝑧)) → 𝑥𝐶)
5958ex 412 . . . . 5 (𝜑 → (∀𝑧(∀𝑤(𝑤𝑥 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑥𝑧) → 𝑥𝐶))
607, 59sylbid 240 . . . 4 (𝜑 → (𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} → 𝑥𝐶))
6160ralrimiv 3145 . . 3 (𝜑 → ∀𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}𝑥𝐶)
62 unissb 4939 . . 3 ( {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} ⊆ 𝐶 ↔ ∀𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}𝑥𝐶)
6361, 62sylibr 234 . 2 (𝜑 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)} ⊆ 𝐶)
643, 63eqsstrid 4022 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  {cab 2714  wnfc 2890  wral 3061  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907  cima 5688  Fun wfun 6555  cfv 6561  setrecscsetrecs 49202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-setrecs 49203
This theorem is referenced by:  setrec2  49214
  Copyright terms: Public domain W3C validator