| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | setrec2fun.2 | . . 3
⊢ 𝐵 = setrecs(𝐹) | 
| 2 |  | df-setrecs 49203 | . . 3
⊢
setrecs(𝐹) = ∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | 
| 3 | 1, 2 | eqtri 2765 | . 2
⊢ 𝐵 = ∪
{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | 
| 4 |  | eqid 2737 | . . . . . 6
⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | 
| 5 |  | vex 3484 | . . . . . . 7
⊢ 𝑥 ∈ V | 
| 6 | 5 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝑥 ∈ V) | 
| 7 | 4, 6 | setrec1lem1 49206 | . . . . 5
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧))) | 
| 8 |  | id 22 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) | 
| 9 |  | inss1 4237 | . . . . . . . . . . . . . . 15
⊢ (𝐶 ∩ ∪ (𝐹
“ 𝒫 𝑥))
⊆ 𝐶 | 
| 10 | 8, 9 | sstrdi 3996 | . . . . . . . . . . . . . 14
⊢ (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → 𝑤 ⊆ 𝐶) | 
| 11 |  | setrec2fun.4 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) | 
| 12 |  | nfv 1914 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎 𝑤 ⊆ 𝐶 | 
| 13 |  | setrec2fun.1 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎𝐹 | 
| 14 |  | nfcv 2905 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎𝑤 | 
| 15 | 13, 14 | nffv 6916 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎(𝐹‘𝑤) | 
| 16 |  | nfcv 2905 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑎𝐶 | 
| 17 | 15, 16 | nfss 3976 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎(𝐹‘𝑤) ⊆ 𝐶 | 
| 18 | 12, 17 | nfim 1896 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎(𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶) | 
| 19 |  | sseq1 4009 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑤 → (𝑎 ⊆ 𝐶 ↔ 𝑤 ⊆ 𝐶)) | 
| 20 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑤 → (𝐹‘𝑎) = (𝐹‘𝑤)) | 
| 21 | 20 | sseq1d 4015 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑤 → ((𝐹‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑤) ⊆ 𝐶)) | 
| 22 | 19, 21 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑤 → ((𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶) ↔ (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶))) | 
| 23 | 22 | biimpd 229 | . . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑤 → ((𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶) → (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶))) | 
| 24 | 18, 23 | spimfv 2239 | . . . . . . . . . . . . . . 15
⊢
(∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶) → (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶)) | 
| 25 | 11, 24 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑤 ⊆ 𝐶 → (𝐹‘𝑤) ⊆ 𝐶)) | 
| 26 | 10, 25 | syl5 34 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ 𝐶)) | 
| 27 | 26 | imp 406 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ 𝐶) | 
| 28 | 27 | 3adant2 1132 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ⊆ 𝑥 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ 𝐶) | 
| 29 |  | velpw 4605 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝒫 𝑥 ↔ 𝑤 ⊆ 𝑥) | 
| 30 |  | eliman0 6946 | . . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ 𝒫 𝑥 ∧ ¬ (𝐹‘𝑤) = ∅) → (𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥)) | 
| 31 | 30 | ex 412 | . . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ 𝒫 𝑥 → (¬ (𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥))) | 
| 32 | 29, 31 | sylbir 235 | . . . . . . . . . . . . . 14
⊢ (𝑤 ⊆ 𝑥 → (¬ (𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥))) | 
| 33 |  | elssuni 4937 | . . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑤) ∈ (𝐹 “ 𝒫 𝑥) → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) | 
| 34 | 32, 33 | syl6 35 | . . . . . . . . . . . . 13
⊢ (𝑤 ⊆ 𝑥 → (¬ (𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥))) | 
| 35 |  | id 22 | . . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑤) = ∅ → (𝐹‘𝑤) = ∅) | 
| 36 |  | 0ss 4400 | . . . . . . . . . . . . . 14
⊢ ∅
⊆ ∪ (𝐹 “ 𝒫 𝑥) | 
| 37 | 35, 36 | eqsstrdi 4028 | . . . . . . . . . . . . 13
⊢ ((𝐹‘𝑤) = ∅ → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) | 
| 38 | 34, 37 | pm2.61d2 181 | . . . . . . . . . . . 12
⊢ (𝑤 ⊆ 𝑥 → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) | 
| 39 | 38 | 3ad2ant2 1135 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ⊆ 𝑥 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ ∪ (𝐹 “ 𝒫 𝑥)) | 
| 40 | 28, 39 | ssind 4241 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ⊆ 𝑥 ∧ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) | 
| 41 | 40 | 3exp 1120 | . . . . . . . . 9
⊢ (𝜑 → (𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) | 
| 42 | 41 | alrimiv 1927 | . . . . . . . 8
⊢ (𝜑 → ∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) | 
| 43 |  | setrec2fun.3 | . . . . . . . . . . . 12
⊢ Fun 𝐹 | 
| 44 | 5 | pwex 5380 | . . . . . . . . . . . . 13
⊢ 𝒫
𝑥 ∈ V | 
| 45 | 44 | funimaex 6655 | . . . . . . . . . . . 12
⊢ (Fun
𝐹 → (𝐹 “ 𝒫 𝑥) ∈ V) | 
| 46 | 43, 45 | ax-mp 5 | . . . . . . . . . . 11
⊢ (𝐹 “ 𝒫 𝑥) ∈ V | 
| 47 | 46 | uniex 7761 | . . . . . . . . . 10
⊢ ∪ (𝐹
“ 𝒫 𝑥) ∈
V | 
| 48 | 47 | inex2 5318 | . . . . . . . . 9
⊢ (𝐶 ∩ ∪ (𝐹
“ 𝒫 𝑥))
∈ V | 
| 49 |  | sseq2 4010 | . . . . . . . . . . . . 13
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) | 
| 50 |  | sseq2 4010 | . . . . . . . . . . . . 13
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((𝐹‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) | 
| 51 | 49, 50 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) | 
| 52 | 51 | imbi2d 340 | . . . . . . . . . . 11
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))))) | 
| 53 | 52 | albidv 1920 | . . . . . . . . . 10
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))))) | 
| 54 |  | sseq2 4010 | . . . . . . . . . 10
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝑥 ⊆ 𝑧 ↔ 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) | 
| 55 | 53, 54 | imbi12d 344 | . . . . . . . . 9
⊢ (𝑧 = (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → ((∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) → 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))))) | 
| 56 | 48, 55 | spcv 3605 | . . . . . . . 8
⊢
(∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → (∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)) → (𝐹‘𝑤) ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) → 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥)))) | 
| 57 | 42, 56 | mpan9 506 | . . . . . . 7
⊢ ((𝜑 ∧ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) → 𝑥 ⊆ (𝐶 ∩ ∪ (𝐹 “ 𝒫 𝑥))) | 
| 58 | 57, 9 | sstrdi 3996 | . . . . . 6
⊢ ((𝜑 ∧ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧)) → 𝑥 ⊆ 𝐶) | 
| 59 | 58 | ex 412 | . . . . 5
⊢ (𝜑 → (∀𝑧(∀𝑤(𝑤 ⊆ 𝑥 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑥 ⊆ 𝑧) → 𝑥 ⊆ 𝐶)) | 
| 60 | 7, 59 | sylbid 240 | . . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} → 𝑥 ⊆ 𝐶)) | 
| 61 | 60 | ralrimiv 3145 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}𝑥 ⊆ 𝐶) | 
| 62 |  | unissb 4939 | . . 3
⊢ (∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ⊆ 𝐶 ↔ ∀𝑥 ∈ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)}𝑥 ⊆ 𝐶) | 
| 63 | 61, 62 | sylibr 234 | . 2
⊢ (𝜑 → ∪ {𝑦
∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} ⊆ 𝐶) | 
| 64 | 3, 63 | eqsstrid 4022 | 1
⊢ (𝜑 → 𝐵 ⊆ 𝐶) |