Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpordxf Structured version   Visualization version   GIF version

Theorem ovmpordxf 48063
Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7600. (Contributed by AV, 30-Mar-2019.)
Hypotheses
Ref Expression
ovmpordx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpordx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpordx.3 ((𝜑𝑦 = 𝐵) → 𝐶 = 𝐿)
ovmpordx.4 (𝜑𝐴𝐿)
ovmpordx.5 (𝜑𝐵𝐷)
ovmpordx.6 (𝜑𝑆𝑋)
ovmpordxf.px 𝑥𝜑
ovmpordxf.py 𝑦𝜑
ovmpordxf.ay 𝑦𝐴
ovmpordxf.bx 𝑥𝐵
ovmpordxf.sx 𝑥𝑆
ovmpordxf.sy 𝑦𝑆
Assertion
Ref Expression
ovmpordxf (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpordxf
StepHypRef Expression
1 ovmpordx.1 . . 3 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
21oveqd 7465 . 2 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3 ovmpordx.4 . . . 4 (𝜑𝐴𝐿)
4 ovmpordxf.px . . . . 5 𝑥𝜑
5 ovmpordx.5 . . . . . 6 (𝜑𝐵𝐷)
6 ovmpordxf.py . . . . . . 7 𝑦𝜑
7 eqid 2740 . . . . . . . . 9 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
87ovmpt4g 7597 . . . . . . . 8 ((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
98a1i 11 . . . . . . 7 (𝜑 → ((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
106, 9alrimi 2214 . . . . . 6 (𝜑 → ∀𝑦((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
115, 10spsbcd 3818 . . . . 5 (𝜑[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
124, 11alrimi 2214 . . . 4 (𝜑 → ∀𝑥[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
133, 12spsbcd 3818 . . 3 (𝜑[𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
145adantr 480 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐷)
153ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐴𝐿)
16 simpr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐴) → 𝑥 = 𝐴)
1716adantr 480 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴)
18 ovmpordx.3 . . . . . . . . 9 ((𝜑𝑦 = 𝐵) → 𝐶 = 𝐿)
1918adantlr 714 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿)
2015, 17, 193eltr4d 2859 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐶)
215ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐵𝐷)
22 eleq1 2832 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑦𝐷𝐵𝐷))
2322adantl 481 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝑦𝐷𝐵𝐷))
2421, 23mpbird 257 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦𝐷)
25 ovmpordx.2 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
2625anassrs 467 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)
27 ovmpordx.6 . . . . . . . . 9 (𝜑𝑆𝑋)
2827ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑆𝑋)
2926, 28eqeltrd 2844 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅𝑋)
30 biimt 360 . . . . . . 7 ((𝑥𝐶𝑦𝐷𝑅𝑋) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3120, 24, 29, 30syl3anc 1371 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
32 simpr 484 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
3317, 32oveq12d 7466 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3433, 26eqeq12d 2756 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
3531, 34bitr3d 281 . . . . 5 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
36 ovmpordxf.ay . . . . . . 7 𝑦𝐴
3736nfeq2 2926 . . . . . 6 𝑦 𝑥 = 𝐴
386, 37nfan 1898 . . . . 5 𝑦(𝜑𝑥 = 𝐴)
39 nfmpo2 7531 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
40 nfcv 2908 . . . . . . . 8 𝑦𝐵
4136, 39, 40nfov 7478 . . . . . . 7 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
42 ovmpordxf.sy . . . . . . 7 𝑦𝑆
4341, 42nfeq 2922 . . . . . 6 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
4443a1i 11 . . . . 5 ((𝜑𝑥 = 𝐴) → Ⅎ𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
4514, 35, 38, 44sbciedf 3849 . . . 4 ((𝜑𝑥 = 𝐴) → ([𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
46 nfcv 2908 . . . . . . 7 𝑥𝐴
47 nfmpo1 7530 . . . . . . 7 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
48 ovmpordxf.bx . . . . . . 7 𝑥𝐵
4946, 47, 48nfov 7478 . . . . . 6 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
50 ovmpordxf.sx . . . . . 6 𝑥𝑆
5149, 50nfeq 2922 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
5251a1i 11 . . . 4 (𝜑 → Ⅎ𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
533, 45, 4, 52sbciedf 3849 . . 3 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅𝑋) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
5413, 53mpbid 232 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
552, 54eqtrd 2780 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  [wsbc 3804  (class class class)co 7448  cmpo 7450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453
This theorem is referenced by:  ovmpordx  48064
  Copyright terms: Public domain W3C validator