| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssabdv | Structured version Visualization version GIF version | ||
| Description: Deduction of abstraction subclass from implication. (Contributed by SN, 22-Dec-2024.) |
| Ref | Expression |
|---|---|
| ssabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
| Ref | Expression |
|---|---|
| ssabdv | ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abid1 2878 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 2 | ssabdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
| 3 | 2 | ss2abdv 4066 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜓}) |
| 4 | 1, 3 | eqsstrid 4022 | 1 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 {cab 2714 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ss 3968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |