Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssabdv | Structured version Visualization version GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by SN, 22-Dec-2024.) |
Ref | Expression |
---|---|
ssabdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) |
Ref | Expression |
---|---|
ssabdv | ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid1 2878 | . 2 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
2 | ssabdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜓)) | |
3 | 2 | ss2abdv 4002 | . 2 ⊢ (𝜑 → {𝑥 ∣ 𝑥 ∈ 𝐴} ⊆ {𝑥 ∣ 𝜓}) |
4 | 1, 3 | eqsstrid 3974 | 1 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 {cab 2713 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |