Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssabdv Structured version   Visualization version   GIF version

Theorem ssabdv 40389
Description: Deduction of abstraction subclass from implication. (Contributed by SN, 22-Dec-2024.)
Hypothesis
Ref Expression
ssabdv.1 (𝜑 → (𝑥𝐴𝜓))
Assertion
Ref Expression
ssabdv (𝜑𝐴 ⊆ {𝑥𝜓})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem ssabdv
StepHypRef Expression
1 abid1 2878 . 2 𝐴 = {𝑥𝑥𝐴}
2 ssabdv.1 . . 3 (𝜑 → (𝑥𝐴𝜓))
32ss2abdv 4002 . 2 (𝜑 → {𝑥𝑥𝐴} ⊆ {𝑥𝜓})
41, 3eqsstrid 3974 1 (𝜑𝐴 ⊆ {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  {cab 2713  wss 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-in 3899  df-ss 3909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator