MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2abim Structured version   Visualization version   GIF version

Theorem ss2abim 4008
Description: Class abstractions in a subclass relationship. Reverse direction of ss2ab 4009 which requires fewer axioms. (Contributed by SN, 2-Feb-2026.)
Assertion
Ref Expression
ss2abim (∀𝑥(𝜑𝜓) → {𝑥𝜑} ⊆ {𝑥𝜓})

Proof of Theorem ss2abim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 spsbim 2075 . . 3 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
21alrimiv 1928 . 2 (∀𝑥(𝜑𝜓) → ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
3 df-ss 3914 . . 3 ({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝜓}))
4 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
5 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜓} ↔ [𝑦 / 𝑥]𝜓)
64, 5imbi12i 350 . . . 4 ((𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝜓}) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
76albii 1820 . . 3 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝜓}) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
83, 7bitr2i 276 . 2 (∀𝑦([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ {𝑥𝜑} ⊆ {𝑥𝜓})
92, 8sylib 218 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} ⊆ {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  [wsb 2067  wcel 2111  {cab 2709  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-sb 2068  df-clab 2710  df-ss 3914
This theorem is referenced by:  ss2rabd  4020  moabex  5401
  Copyright terms: Public domain W3C validator