| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2abim | Structured version Visualization version GIF version | ||
| Description: Class abstractions in a subclass relationship. Reverse direction of ss2ab 4009 which requires fewer axioms. (Contributed by SN, 2-Feb-2026.) |
| Ref | Expression |
|---|---|
| ss2abim | ⊢ (∀𝑥(𝜑 → 𝜓) → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbim 2075 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 3 | df-ss 3914 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} ↔ ∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜓})) | |
| 4 | df-clab 2710 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
| 5 | df-clab 2710 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜓} ↔ [𝑦 / 𝑥]𝜓) | |
| 6 | 4, 5 | imbi12i 350 | . . . 4 ⊢ ((𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 7 | 6 | albii 1820 | . . 3 ⊢ (∀𝑦(𝑦 ∈ {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜓}) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
| 8 | 3, 7 | bitr2i 276 | . 2 ⊢ (∀𝑦([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| 9 | 2, 8 | sylib 218 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 [wsb 2067 ∈ wcel 2111 {cab 2709 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-sb 2068 df-clab 2710 df-ss 3914 |
| This theorem is referenced by: ss2rabd 4020 moabex 5401 |
| Copyright terms: Public domain | W3C validator |