| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ss2rabd | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). Saves ax-10 2144, ax-11 2160, ax-12 2180 over using ss2rab 4017 and sylibr 234. (Contributed by SN, 4-Feb-2026.) |
| Ref | Expression |
|---|---|
| ss2rabd.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ss2rabd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabd.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | |
| 2 | df-ral 3048 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | imdistan 567 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → (𝜓 → 𝜒)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
| 4 | 3 | albii 1820 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜓 → 𝜒)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 5 | 2, 4 | bitri 275 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 6 | 1, 5 | sylib 218 | . . 3 ⊢ (𝜑 → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 7 | ss2abim 4008 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐴 ∧ 𝜒)) → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) |
| 9 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 10 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} | |
| 11 | 8, 9, 10 | 3sstr4g 3983 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 {cab 2709 ∀wral 3047 {crab 3395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-rab 3396 df-ss 3914 |
| This theorem is referenced by: ss2rabdv 4023 ondomon 10460 xrlimcnp 26911 ss2rabdf 45252 pimiooltgt 46813 |
| Copyright terms: Public domain | W3C validator |