MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ss2rabd Structured version   Visualization version   GIF version

Theorem ss2rabd 4020
Description: Subclass of a restricted class abstraction (deduction form). Saves ax-10 2144, ax-11 2160, ax-12 2180 over using ss2rab 4017 and sylibr 234. (Contributed by SN, 4-Feb-2026.)
Hypothesis
Ref Expression
ss2rabd.1 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
Assertion
Ref Expression
ss2rabd (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})

Proof of Theorem ss2rabd
StepHypRef Expression
1 ss2rabd.1 . . . 4 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
2 df-ral 3048 . . . . 5 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
3 imdistan 567 . . . . . 6 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
43albii 1820 . . . . 5 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
52, 4bitri 275 . . . 4 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
61, 5sylib 218 . . 3 (𝜑 → ∀𝑥((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
7 ss2abim 4008 . . 3 (∀𝑥((𝑥𝐴𝜓) → (𝑥𝐴𝜒)) → {𝑥 ∣ (𝑥𝐴𝜓)} ⊆ {𝑥 ∣ (𝑥𝐴𝜒)})
86, 7syl 17 . 2 (𝜑 → {𝑥 ∣ (𝑥𝐴𝜓)} ⊆ {𝑥 ∣ (𝑥𝐴𝜒)})
9 df-rab 3396 . 2 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
10 df-rab 3396 . 2 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
118, 9, 103sstr4g 3983 1 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wcel 2111  {cab 2709  wral 3047  {crab 3395  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ral 3048  df-rab 3396  df-ss 3914
This theorem is referenced by:  ss2rabdv  4023  ondomon  10460  xrlimcnp  26911  ss2rabdf  45252  pimiooltgt  46813
  Copyright terms: Public domain W3C validator