MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moabex Structured version   Visualization version   GIF version

Theorem moabex 5368
Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.)
Assertion
Ref Expression
moabex (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem moabex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2540 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 abss 3990 . . . . 5 ({𝑥𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑𝑥 ∈ {𝑦}))
3 velsn 4574 . . . . . . 7 (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦)
43imbi2i 335 . . . . . 6 ((𝜑𝑥 ∈ {𝑦}) ↔ (𝜑𝑥 = 𝑦))
54albii 1823 . . . . 5 (∀𝑥(𝜑𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑𝑥 = 𝑦))
62, 5bitri 274 . . . 4 ({𝑥𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
7 snex 5349 . . . . 5 {𝑦} ∈ V
87ssex 5240 . . . 4 ({𝑥𝜑} ⊆ {𝑦} → {𝑥𝜑} ∈ V)
96, 8sylbir 234 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} ∈ V)
109exlimiv 1934 . 2 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → {𝑥𝜑} ∈ V)
111, 10sylbi 216 1 (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783  wcel 2108  ∃*wmo 2538  {cab 2715  Vcvv 3422  wss 3883  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  rmorabex  5369  euabex  5370  satfv0  33220
  Copyright terms: Public domain W3C validator