Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moabex | Structured version Visualization version GIF version |
Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
Ref | Expression |
---|---|
moabex | ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | abss 3990 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 ∈ {𝑦})) | |
3 | velsn 4574 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | imbi2i 335 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ {𝑦}) ↔ (𝜑 → 𝑥 = 𝑦)) |
5 | 4 | albii 1823 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 274 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
7 | snex 5349 | . . . . 5 ⊢ {𝑦} ∈ V | |
8 | 7 | ssex 5240 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
9 | 6, 8 | sylbir 234 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
10 | 9 | exlimiv 1934 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
11 | 1, 10 | sylbi 216 | 1 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 ∃*wmo 2538 {cab 2715 Vcvv 3422 ⊆ wss 3883 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: rmorabex 5369 euabex 5370 satfv0 33220 |
Copyright terms: Public domain | W3C validator |