![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moabex | Structured version Visualization version GIF version |
Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
Ref | Expression |
---|---|
moabex | ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2543 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | abss 4086 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 ∈ {𝑦})) | |
3 | velsn 4664 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | imbi2i 336 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ {𝑦}) ↔ (𝜑 → 𝑥 = 𝑦)) |
5 | 4 | albii 1817 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 275 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
7 | vsnex 5449 | . . . . 5 ⊢ {𝑦} ∈ V | |
8 | 7 | ssex 5339 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
9 | 6, 8 | sylbir 235 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
10 | 9 | exlimiv 1929 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
11 | 1, 10 | sylbi 217 | 1 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 ∃*wmo 2541 {cab 2717 Vcvv 3488 ⊆ wss 3976 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: rmorabex 5480 euabex 5481 satfv0 35326 |
Copyright terms: Public domain | W3C validator |