| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moabex | Structured version Visualization version GIF version | ||
| Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) Avoid axioms. (Revised by SN, 2-Feb-2026.) |
| Ref | Expression |
|---|---|
| moabex | ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2537 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 2 | df-sn 4576 | . . . . . 6 ⊢ {𝑦} = {𝑥 ∣ 𝑥 = 𝑦} | |
| 3 | vsnex 5374 | . . . . . 6 ⊢ {𝑦} ∈ V | |
| 4 | 2, 3 | eqeltrri 2830 | . . . . 5 ⊢ {𝑥 ∣ 𝑥 = 𝑦} ∈ V |
| 5 | 4 | a1i 11 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝑥 = 𝑦} ∈ V) |
| 6 | ss2abim 4009 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝑥 = 𝑦}) | |
| 7 | 5, 6 | ssexd 5264 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
| 8 | 7 | exlimiv 1931 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
| 9 | 1, 8 | sylbi 217 | 1 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 ∈ wcel 2113 ∃*wmo 2535 {cab 2711 Vcvv 3437 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-un 3903 df-in 3905 df-ss 3915 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: rmorabex 5403 euabex 5404 satfv0 35423 |
| Copyright terms: Public domain | W3C validator |