| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moabex | Structured version Visualization version GIF version | ||
| Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
| Ref | Expression |
|---|---|
| moabex | ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2535 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 2 | abss 4014 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 ∈ {𝑦})) | |
| 3 | velsn 4592 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
| 4 | 3 | imbi2i 336 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ {𝑦}) ↔ (𝜑 → 𝑥 = 𝑦)) |
| 5 | 4 | albii 1820 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 6 | 2, 5 | bitri 275 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 7 | vsnex 5372 | . . . . 5 ⊢ {𝑦} ∈ V | |
| 8 | 7 | ssex 5259 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
| 9 | 6, 8 | sylbir 235 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
| 10 | 9 | exlimiv 1931 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
| 11 | 1, 10 | sylbi 217 | 1 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 {cab 2709 Vcvv 3436 ⊆ wss 3902 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-un 3907 df-in 3909 df-ss 3919 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: rmorabex 5400 euabex 5401 satfv0 35390 |
| Copyright terms: Public domain | W3C validator |