![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moabex | Structured version Visualization version GIF version |
Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996.) |
Ref | Expression |
---|---|
moabex | ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2532 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
2 | abss 4058 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 ∈ {𝑦})) | |
3 | velsn 4645 | . . . . . . 7 ⊢ (𝑥 ∈ {𝑦} ↔ 𝑥 = 𝑦) | |
4 | 3 | imbi2i 335 | . . . . . 6 ⊢ ((𝜑 → 𝑥 ∈ {𝑦}) ↔ (𝜑 → 𝑥 = 𝑦)) |
5 | 4 | albii 1819 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ {𝑦}) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 2, 5 | bitri 274 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
7 | vsnex 5430 | . . . . 5 ⊢ {𝑦} ∈ V | |
8 | 7 | ssex 5322 | . . . 4 ⊢ ({𝑥 ∣ 𝜑} ⊆ {𝑦} → {𝑥 ∣ 𝜑} ∈ V) |
9 | 6, 8 | sylbir 234 | . . 3 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
10 | 9 | exlimiv 1931 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → {𝑥 ∣ 𝜑} ∈ V) |
11 | 1, 10 | sylbi 216 | 1 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1779 ∈ wcel 2104 ∃*wmo 2530 {cab 2707 Vcvv 3472 ⊆ wss 3949 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rab 3431 df-v 3474 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 |
This theorem is referenced by: rmorabex 5461 euabex 5462 satfv0 34645 |
Copyright terms: Public domain | W3C validator |