Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-iotalem Structured version   Visualization version   GIF version

Theorem sn-iotalem 40089
Description: An unused lemma showing that many equivalences involving df-iota 6373 are potentially provable without ax-10 2143, ax-11 2160, ax-12 2177. (Contributed by SN, 6-Nov-2024.)
Assertion
Ref Expression
sn-iotalem {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}}
Distinct variable groups:   𝑥,𝑦,𝑧   𝜑,𝑦,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem sn-iotalem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2743 . . . . . . 7 ({𝑥𝜑} = {𝑤} → ({𝑥𝜑} = {𝑧} ↔ {𝑤} = {𝑧}))
2 sneqbg 4771 . . . . . . . . 9 (𝑤 ∈ V → ({𝑤} = {𝑧} ↔ 𝑤 = 𝑧))
32elv 3429 . . . . . . . 8 ({𝑤} = {𝑧} ↔ 𝑤 = 𝑧)
4 equcom 2026 . . . . . . . 8 (𝑤 = 𝑧𝑧 = 𝑤)
53, 4bitri 278 . . . . . . 7 ({𝑤} = {𝑧} ↔ 𝑧 = 𝑤)
61, 5bitrdi 290 . . . . . 6 ({𝑥𝜑} = {𝑤} → ({𝑥𝜑} = {𝑧} ↔ 𝑧 = 𝑤))
7 sneq 4568 . . . . . . . . 9 (𝑦 = 𝑧 → {𝑦} = {𝑧})
87eqeq2d 2750 . . . . . . . 8 (𝑦 = 𝑧 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑧}))
98elabg 3601 . . . . . . 7 (𝑧 ∈ V → (𝑧 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ {𝑥𝜑} = {𝑧}))
109elv 3429 . . . . . 6 (𝑧 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ {𝑥𝜑} = {𝑧})
11 velsn 4574 . . . . . 6 (𝑧 ∈ {𝑤} ↔ 𝑧 = 𝑤)
126, 10, 113bitr4g 317 . . . . 5 ({𝑥𝜑} = {𝑤} → (𝑧 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ 𝑧 ∈ {𝑤}))
1312eqrdv 2737 . . . 4 ({𝑥𝜑} = {𝑤} → {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤})
14 vsnid 4595 . . . . . 6 𝑤 ∈ {𝑤}
15 eleq2 2828 . . . . . 6 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤} → (𝑤 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ 𝑤 ∈ {𝑤}))
1614, 15mpbiri 261 . . . . 5 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤} → 𝑤 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}})
17 sneq 4568 . . . . . . . 8 (𝑦 = 𝑤 → {𝑦} = {𝑤})
1817eqeq2d 2750 . . . . . . 7 (𝑦 = 𝑤 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑤}))
1918elabg 3601 . . . . . 6 (𝑤 ∈ V → (𝑤 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ {𝑥𝜑} = {𝑤}))
2019elv 3429 . . . . 5 (𝑤 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ {𝑥𝜑} = {𝑤})
2116, 20sylib 221 . . . 4 ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤} → {𝑥𝜑} = {𝑤})
2213, 21impbii 212 . . 3 ({𝑥𝜑} = {𝑤} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤})
23 sneq 4568 . . . . . 6 (𝑧 = 𝑤 → {𝑧} = {𝑤})
2423eqeq2d 2750 . . . . 5 (𝑧 = 𝑤 → ({𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤}))
2524elabg 3601 . . . 4 (𝑤 ∈ V → (𝑤 ∈ {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤}))
2625elv 3429 . . 3 (𝑤 ∈ {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}} ↔ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑤})
2722, 20, 263bitr4i 306 . 2 (𝑤 ∈ {𝑦 ∣ {𝑥𝜑} = {𝑦}} ↔ 𝑤 ∈ {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}})
2827eqriv 2736 1 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}}
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wcel 2112  {cab 2716  Vcvv 3423  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-v 3425  df-sn 4559
This theorem is referenced by:  sn-iotalemcor  40090
  Copyright terms: Public domain W3C validator