MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdif2d Structured version   Visualization version   GIF version

Theorem ssdif2d 4138
Description: If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴𝐷) is contained in (𝐵𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
ssdif2d.2 (𝜑𝐶𝐷)
Assertion
Ref Expression
ssdif2d (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3 (𝜑𝐶𝐷)
21sscond 4136 . 2 (𝜑 → (𝐴𝐷) ⊆ (𝐴𝐶))
3 ssdifd.1 . . 3 (𝜑𝐴𝐵)
43ssdifd 4135 . 2 (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
52, 4sstrd 3987 1 (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3940  wss 3943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-v 3470  df-dif 3946  df-in 3950  df-ss 3960
This theorem is referenced by:  mblfinlem3  37038  mblfinlem4  37039
  Copyright terms: Public domain W3C validator