MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdif2d Structured version   Visualization version   GIF version

Theorem ssdif2d 4158
Description: If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴𝐷) is contained in (𝐵𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
ssdif2d.2 (𝜑𝐶𝐷)
Assertion
Ref Expression
ssdif2d (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))

Proof of Theorem ssdif2d
StepHypRef Expression
1 ssdif2d.2 . . 3 (𝜑𝐶𝐷)
21sscond 4156 . 2 (𝜑 → (𝐴𝐷) ⊆ (𝐴𝐶))
3 ssdifd.1 . . 3 (𝜑𝐴𝐵)
43ssdifd 4155 . 2 (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
52, 4sstrd 4006 1 (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3960  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-ss 3980
This theorem is referenced by:  mblfinlem3  37646  mblfinlem4  37647
  Copyright terms: Public domain W3C validator