| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4103. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4103 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3908 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 |
| This theorem is referenced by: ssdif2d 4107 domunsncan 9018 fin1a2lem13 10341 seqcoll2 14406 rpnnen2lem11 16168 coprmprod 16607 mrieqv2d 17576 mrissmrid 17578 mreexexlem4d 17584 acsfiindd 18488 subdrgint 20688 lsppratlem3 21035 lsppratlem4 21036 f1lindf 21707 lpss3 23007 lpcls 23227 fin1aufil 23795 rrxmval 25281 rrxmetlem 25283 uniioombllem3 25462 i1fmul 25573 itg1addlem4 25576 itg1climres 25591 limciun 25771 ig1peu 26056 ig1pdvds 26061 fusgreghash2wspv 30237 indsumin 32758 chnind 32910 pmtrcnel2 33020 pmtrcnelor 33021 tocyccntz 33074 elrspunidl 33372 elrspunsn 33373 sitgclg 34306 mthmpps 35542 poimirlem11 37598 poimirlem12 37599 poimirlem15 37602 dochfln0 41444 lcfl6 41467 lcfrlem16 41525 hdmaprnlem4N 41820 tfsconcatlem 43298 caragendifcl 46485 |
| Copyright terms: Public domain | W3C validator |