![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4167. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4167 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3973 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 |
This theorem is referenced by: ssdif2d 4171 domunsncan 9138 fin1a2lem13 10481 seqcoll2 14514 rpnnen2lem11 16272 coprmprod 16708 mrieqv2d 17697 mrissmrid 17699 mreexexlem4d 17705 acsfiindd 18623 subdrgint 20826 lsppratlem3 21174 lsppratlem4 21175 f1lindf 21865 lpss3 23173 lpcls 23393 fin1aufil 23961 rrxmval 25458 rrxmetlem 25460 uniioombllem3 25639 i1fmul 25750 itg1addlem4 25753 itg1addlem4OLD 25754 itg1climres 25769 limciun 25949 ig1peu 26234 ig1pdvds 26239 fusgreghash2wspv 30367 chnind 32983 pmtrcnel2 33083 pmtrcnelor 33084 tocyccntz 33137 elrspunidl 33421 elrspunsn 33422 indsumin 33986 sitgclg 34307 mthmpps 35550 poimirlem11 37591 poimirlem12 37592 poimirlem15 37595 dochfln0 41434 lcfl6 41457 lcfrlem16 41515 hdmaprnlem4N 41810 tfsconcatlem 43298 caragendifcl 46435 |
Copyright terms: Public domain | W3C validator |