| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4095. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4095 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3900 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 |
| This theorem is referenced by: ssdif2d 4099 domunsncan 8994 fin1a2lem13 10306 seqcoll2 14372 rpnnen2lem11 16133 coprmprod 16572 mrieqv2d 17545 mrissmrid 17547 mreexexlem4d 17553 acsfiindd 18459 subdrgint 20688 lsppratlem3 21056 lsppratlem4 21057 f1lindf 21729 lpss3 23029 lpcls 23249 fin1aufil 23817 rrxmval 25303 rrxmetlem 25305 uniioombllem3 25484 i1fmul 25595 itg1addlem4 25598 itg1climres 25613 limciun 25793 ig1peu 26078 ig1pdvds 26083 fusgreghash2wspv 30279 indsumin 32805 chnind 32953 pmtrcnel2 33032 pmtrcnelor 33033 tocyccntz 33086 elrspunidl 33365 elrspunsn 33366 sitgclg 34310 mthmpps 35559 poimirlem11 37615 poimirlem12 37616 poimirlem15 37619 dochfln0 41460 lcfl6 41483 lcfrlem16 41541 hdmaprnlem4N 41836 tfsconcatlem 43313 caragendifcl 46499 |
| Copyright terms: Public domain | W3C validator |