![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4138. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4138 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3944 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-dif 3950 df-in 3954 df-ss 3964 |
This theorem is referenced by: ssdif2d 4142 domunsncan 9096 fin1a2lem13 10435 seqcoll2 14458 rpnnen2lem11 16200 coprmprod 16631 mrieqv2d 17618 mrissmrid 17620 mreexexlem4d 17626 acsfiindd 18544 subdrgint 20690 lsppratlem3 21036 lsppratlem4 21037 f1lindf 21755 lpss3 23047 lpcls 23267 fin1aufil 23835 rrxmval 25332 rrxmetlem 25334 uniioombllem3 25513 i1fmul 25624 itg1addlem4 25627 itg1addlem4OLD 25628 itg1climres 25643 limciun 25822 ig1peu 26108 ig1pdvds 26113 fusgreghash2wspv 30144 pmtrcnel2 32813 pmtrcnelor 32814 tocyccntz 32865 elrspunidl 33144 elrspunsn 33145 indsumin 33641 sitgclg 33962 mthmpps 35192 poimirlem11 37104 poimirlem12 37105 poimirlem15 37108 dochfln0 40950 lcfl6 40973 lcfrlem16 41031 hdmaprnlem4N 41326 tfsconcatlem 42765 caragendifcl 45902 |
Copyright terms: Public domain | W3C validator |