![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 3943. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 3943 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3766 ⊆ wss 3769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-dif 3772 df-in 3776 df-ss 3783 |
This theorem is referenced by: ssdif2d 3947 domunsncan 8302 fin1a2lem13 9522 seqcoll2 13498 rpnnen2lem11 15289 coprmprod 15709 mrieqv2d 16614 mrissmrid 16616 mreexexlem4d 16622 acsfiindd 17492 lsppratlem3 19472 lsppratlem4 19473 f1lindf 20486 lpss3 21277 lpcls 21497 fin1aufil 22064 rrxmval 23527 rrxmetlem 23529 uniioombllem3 23693 i1fmul 23804 itg1addlem4 23807 itg1climres 23822 limciun 23999 ig1peu 24272 ig1pdvds 24277 fusgreghash2wspv 27684 indsumin 30600 sitgclg 30920 mthmpps 31996 poimirlem11 33909 poimirlem12 33910 poimirlem15 33913 dochfln0 37498 lcfl6 37521 lcfrlem16 37579 hdmaprnlem4N 37874 caragendifcl 41474 |
Copyright terms: Public domain | W3C validator |