| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4107. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4107 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3911 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 |
| This theorem is referenced by: ssdif2d 4111 domunsncan 9041 fin1a2lem13 10365 seqcoll2 14430 rpnnen2lem11 16192 coprmprod 16631 mrieqv2d 17600 mrissmrid 17602 mreexexlem4d 17608 acsfiindd 18512 subdrgint 20712 lsppratlem3 21059 lsppratlem4 21060 f1lindf 21731 lpss3 23031 lpcls 23251 fin1aufil 23819 rrxmval 25305 rrxmetlem 25307 uniioombllem3 25486 i1fmul 25597 itg1addlem4 25600 itg1climres 25615 limciun 25795 ig1peu 26080 ig1pdvds 26085 fusgreghash2wspv 30264 indsumin 32785 chnind 32937 pmtrcnel2 33047 pmtrcnelor 33048 tocyccntz 33101 elrspunidl 33399 elrspunsn 33400 sitgclg 34333 mthmpps 35569 poimirlem11 37625 poimirlem12 37626 poimirlem15 37629 dochfln0 41471 lcfl6 41494 lcfrlem16 41552 hdmaprnlem4N 41847 tfsconcatlem 43325 caragendifcl 46512 |
| Copyright terms: Public domain | W3C validator |