| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4103. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4103 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3908 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 |
| This theorem is referenced by: ssdif2d 4107 domunsncan 9018 fin1a2lem13 10341 seqcoll2 14406 rpnnen2lem11 16168 coprmprod 16607 mrieqv2d 17580 mrissmrid 17582 mreexexlem4d 17588 acsfiindd 18494 subdrgint 20723 lsppratlem3 21091 lsppratlem4 21092 f1lindf 21764 lpss3 23064 lpcls 23284 fin1aufil 23852 rrxmval 25338 rrxmetlem 25340 uniioombllem3 25519 i1fmul 25630 itg1addlem4 25633 itg1climres 25648 limciun 25828 ig1peu 26113 ig1pdvds 26118 fusgreghash2wspv 30314 indsumin 32835 chnind 32983 pmtrcnel2 33062 pmtrcnelor 33063 tocyccntz 33116 elrspunidl 33392 elrspunsn 33393 sitgclg 34326 mthmpps 35562 poimirlem11 37618 poimirlem12 37619 poimirlem15 37622 dochfln0 41464 lcfl6 41487 lcfrlem16 41545 hdmaprnlem4N 41840 tfsconcatlem 43318 caragendifcl 46505 |
| Copyright terms: Public domain | W3C validator |