![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4153. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4153 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3959 ⊆ wss 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-ss 3979 |
This theorem is referenced by: ssdif2d 4157 domunsncan 9110 fin1a2lem13 10449 seqcoll2 14500 rpnnen2lem11 16256 coprmprod 16694 mrieqv2d 17683 mrissmrid 17685 mreexexlem4d 17691 acsfiindd 18610 subdrgint 20820 lsppratlem3 21168 lsppratlem4 21169 f1lindf 21859 lpss3 23167 lpcls 23387 fin1aufil 23955 rrxmval 25452 rrxmetlem 25454 uniioombllem3 25633 i1fmul 25744 itg1addlem4 25747 itg1addlem4OLD 25748 itg1climres 25763 limciun 25943 ig1peu 26228 ig1pdvds 26233 fusgreghash2wspv 30363 chnind 32984 pmtrcnel2 33092 pmtrcnelor 33093 tocyccntz 33146 elrspunidl 33435 elrspunsn 33436 indsumin 34002 sitgclg 34323 mthmpps 35566 poimirlem11 37617 poimirlem12 37618 poimirlem15 37621 dochfln0 41459 lcfl6 41482 lcfrlem16 41540 hdmaprnlem4N 41835 tfsconcatlem 43325 caragendifcl 46469 |
Copyright terms: Public domain | W3C validator |