![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4140. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4140 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3946 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 |
This theorem is referenced by: ssdif2d 4144 domunsncan 9072 fin1a2lem13 10407 seqcoll2 14426 rpnnen2lem11 16167 coprmprod 16598 mrieqv2d 17583 mrissmrid 17585 mreexexlem4d 17591 acsfiindd 18506 subdrgint 20419 lsppratlem3 20762 lsppratlem4 20763 f1lindf 21377 lpss3 22648 lpcls 22868 fin1aufil 23436 rrxmval 24922 rrxmetlem 24924 uniioombllem3 25102 i1fmul 25213 itg1addlem4 25216 itg1addlem4OLD 25217 itg1climres 25232 limciun 25411 ig1peu 25689 ig1pdvds 25694 fusgreghash2wspv 29588 pmtrcnel2 32251 pmtrcnelor 32252 tocyccntz 32303 elrspunidl 32546 elrspunsn 32547 indsumin 33020 sitgclg 33341 mthmpps 34573 poimirlem11 36499 poimirlem12 36500 poimirlem15 36503 dochfln0 40348 lcfl6 40371 lcfrlem16 40429 hdmaprnlem4N 40724 tfsconcatlem 42086 caragendifcl 45230 |
Copyright terms: Public domain | W3C validator |