| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4119. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4119 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3923 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-ss 3943 |
| This theorem is referenced by: ssdif2d 4123 domunsncan 9086 fin1a2lem13 10426 seqcoll2 14483 rpnnen2lem11 16242 coprmprod 16680 mrieqv2d 17651 mrissmrid 17653 mreexexlem4d 17659 acsfiindd 18563 subdrgint 20763 lsppratlem3 21110 lsppratlem4 21111 f1lindf 21782 lpss3 23082 lpcls 23302 fin1aufil 23870 rrxmval 25357 rrxmetlem 25359 uniioombllem3 25538 i1fmul 25649 itg1addlem4 25652 itg1climres 25667 limciun 25847 ig1peu 26132 ig1pdvds 26137 fusgreghash2wspv 30316 indsumin 32839 chnind 32991 pmtrcnel2 33101 pmtrcnelor 33102 tocyccntz 33155 elrspunidl 33443 elrspunsn 33444 sitgclg 34374 mthmpps 35604 poimirlem11 37655 poimirlem12 37656 poimirlem15 37659 dochfln0 41496 lcfl6 41519 lcfrlem16 41577 hdmaprnlem4N 41872 tfsconcatlem 43360 caragendifcl 46543 |
| Copyright terms: Public domain | W3C validator |