Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4074. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4074 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3884 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssdif2d 4078 domunsncan 8859 fin1a2lem13 10168 seqcoll2 14179 rpnnen2lem11 15933 coprmprod 16366 mrieqv2d 17348 mrissmrid 17350 mreexexlem4d 17356 acsfiindd 18271 subdrgint 20071 lsppratlem3 20411 lsppratlem4 20412 f1lindf 21029 lpss3 22295 lpcls 22515 fin1aufil 23083 rrxmval 24569 rrxmetlem 24571 uniioombllem3 24749 i1fmul 24860 itg1addlem4 24863 itg1addlem4OLD 24864 itg1climres 24879 limciun 25058 ig1peu 25336 ig1pdvds 25341 fusgreghash2wspv 28699 pmtrcnel2 31359 pmtrcnelor 31360 tocyccntz 31411 elrspunidl 31606 indsumin 31990 sitgclg 32309 mthmpps 33544 poimirlem11 35788 poimirlem12 35789 poimirlem15 35792 dochfln0 39491 lcfl6 39514 lcfrlem16 39572 hdmaprnlem4N 39867 caragendifcl 44052 |
Copyright terms: Public domain | W3C validator |