![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4138. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4138 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3944 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3950 df-in 3954 df-ss 3964 |
This theorem is referenced by: ssdif2d 4142 domunsncan 9074 fin1a2lem13 10409 seqcoll2 14430 rpnnen2lem11 16171 coprmprod 16602 mrieqv2d 17587 mrissmrid 17589 mreexexlem4d 17595 acsfiindd 18510 subdrgint 20562 lsppratlem3 20907 lsppratlem4 20908 f1lindf 21596 lpss3 22868 lpcls 23088 fin1aufil 23656 rrxmval 25153 rrxmetlem 25155 uniioombllem3 25334 i1fmul 25445 itg1addlem4 25448 itg1addlem4OLD 25449 itg1climres 25464 limciun 25643 ig1peu 25924 ig1pdvds 25929 fusgreghash2wspv 29855 pmtrcnel2 32521 pmtrcnelor 32522 tocyccntz 32573 elrspunidl 32820 elrspunsn 32821 indsumin 33318 sitgclg 33639 mthmpps 34871 poimirlem11 36802 poimirlem12 36803 poimirlem15 36806 dochfln0 40651 lcfl6 40674 lcfrlem16 40732 hdmaprnlem4N 41027 tfsconcatlem 42388 caragendifcl 45528 |
Copyright terms: Public domain | W3C validator |