| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4110. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4110 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3914 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 |
| This theorem is referenced by: ssdif2d 4114 domunsncan 9046 fin1a2lem13 10372 seqcoll2 14437 rpnnen2lem11 16199 coprmprod 16638 mrieqv2d 17607 mrissmrid 17609 mreexexlem4d 17615 acsfiindd 18519 subdrgint 20719 lsppratlem3 21066 lsppratlem4 21067 f1lindf 21738 lpss3 23038 lpcls 23258 fin1aufil 23826 rrxmval 25312 rrxmetlem 25314 uniioombllem3 25493 i1fmul 25604 itg1addlem4 25607 itg1climres 25622 limciun 25802 ig1peu 26087 ig1pdvds 26092 fusgreghash2wspv 30271 indsumin 32792 chnind 32944 pmtrcnel2 33054 pmtrcnelor 33055 tocyccntz 33108 elrspunidl 33406 elrspunsn 33407 sitgclg 34340 mthmpps 35576 poimirlem11 37632 poimirlem12 37633 poimirlem15 37636 dochfln0 41478 lcfl6 41501 lcfrlem16 41559 hdmaprnlem4N 41854 tfsconcatlem 43332 caragendifcl 46519 |
| Copyright terms: Public domain | W3C validator |