MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdifd Structured version   Visualization version   GIF version

Theorem ssdifd 4154
Description: If 𝐴 is contained in 𝐵, then (𝐴𝐶) is contained in (𝐵𝐶). Deduction form of ssdif 4153. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
ssdifd.1 (𝜑𝐴𝐵)
Assertion
Ref Expression
ssdifd (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem ssdifd
StepHypRef Expression
1 ssdifd.1 . 2 (𝜑𝐴𝐵)
2 ssdif 4153 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
31, 2syl 17 1 (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cdif 3959  wss 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1539  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-v 3479  df-dif 3965  df-ss 3979
This theorem is referenced by:  ssdif2d  4157  domunsncan  9110  fin1a2lem13  10449  seqcoll2  14500  rpnnen2lem11  16256  coprmprod  16694  mrieqv2d  17683  mrissmrid  17685  mreexexlem4d  17691  acsfiindd  18610  subdrgint  20820  lsppratlem3  21168  lsppratlem4  21169  f1lindf  21859  lpss3  23167  lpcls  23387  fin1aufil  23955  rrxmval  25452  rrxmetlem  25454  uniioombllem3  25633  i1fmul  25744  itg1addlem4  25747  itg1addlem4OLD  25748  itg1climres  25763  limciun  25943  ig1peu  26228  ig1pdvds  26233  fusgreghash2wspv  30363  chnind  32984  pmtrcnel2  33092  pmtrcnelor  33093  tocyccntz  33146  elrspunidl  33435  elrspunsn  33436  indsumin  34002  sitgclg  34323  mthmpps  35566  poimirlem11  37617  poimirlem12  37618  poimirlem15  37621  dochfln0  41459  lcfl6  41482  lcfrlem16  41540  hdmaprnlem4N  41835  tfsconcatlem  43325  caragendifcl  46469
  Copyright terms: Public domain W3C validator