| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4091. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | ssdif 4091 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∖ cdif 3894 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 |
| This theorem is referenced by: ssdif2d 4095 domunsncan 8990 fin1a2lem13 10303 seqcoll2 14372 rpnnen2lem11 16133 coprmprod 16572 mrieqv2d 17545 mrissmrid 17547 mreexexlem4d 17553 acsfiindd 18459 chnind 18527 chnrev 18533 subdrgint 20718 lsppratlem3 21086 lsppratlem4 21087 f1lindf 21759 lpss3 23059 lpcls 23279 fin1aufil 23847 rrxmval 25332 rrxmetlem 25334 uniioombllem3 25513 i1fmul 25624 itg1addlem4 25627 itg1climres 25642 limciun 25822 ig1peu 26107 ig1pdvds 26112 fusgreghash2wspv 30315 indsumin 32843 pmtrcnel2 33059 pmtrcnelor 33060 tocyccntz 33113 elrspunidl 33393 elrspunsn 33394 sitgclg 34355 mthmpps 35626 poimirlem11 37681 poimirlem12 37682 poimirlem15 37685 dochfln0 41586 lcfl6 41609 lcfrlem16 41667 hdmaprnlem4N 41962 tfsconcatlem 43439 caragendifcl 46622 |
| Copyright terms: Public domain | W3C validator |