Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdifd | Structured version Visualization version GIF version |
Description: If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4070. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
ssdifd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
ssdifd | ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdifd.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | ssdif 4070 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3880 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssdif2d 4074 domunsncan 8812 fin1a2lem13 10099 seqcoll2 14107 rpnnen2lem11 15861 coprmprod 16294 mrieqv2d 17265 mrissmrid 17267 mreexexlem4d 17273 acsfiindd 18186 subdrgint 19986 lsppratlem3 20326 lsppratlem4 20327 f1lindf 20939 lpss3 22203 lpcls 22423 fin1aufil 22991 rrxmval 24474 rrxmetlem 24476 uniioombllem3 24654 i1fmul 24765 itg1addlem4 24768 itg1addlem4OLD 24769 itg1climres 24784 limciun 24963 ig1peu 25241 ig1pdvds 25246 fusgreghash2wspv 28600 pmtrcnel2 31261 pmtrcnelor 31262 tocyccntz 31313 elrspunidl 31508 indsumin 31890 sitgclg 32209 mthmpps 33444 poimirlem11 35715 poimirlem12 35716 poimirlem15 35719 dochfln0 39418 lcfl6 39441 lcfrlem16 39499 hdmaprnlem4N 39794 caragendifcl 43942 |
Copyright terms: Public domain | W3C validator |