MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifb Structured version   Visualization version   GIF version

Theorem raldifb 4075
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 450 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
2 df-nel 3049 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥𝐵)
32anbi2i 622 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
4 eldif 3893 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
53, 4bitr4i 277 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
65imbi1i 349 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
71, 6bitr3i 276 . 2 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
87ralbii2 3088 1 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2108  wnel 3048  wral 3063  cdif 3880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nel 3049  df-ral 3068  df-v 3424  df-dif 3886
This theorem is referenced by:  raldifsnb  4726  coprmproddvdslem  16295  poimirlem26  35730  aacllem  46391
  Copyright terms: Public domain W3C validator