| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raldifb | Structured version Visualization version GIF version | ||
| Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| Ref | Expression |
|---|---|
| raldifb | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∉ 𝐵 → 𝜑))) | |
| 2 | df-nel 3036 | . . . . . 6 ⊢ (𝑥 ∉ 𝐵 ↔ ¬ 𝑥 ∈ 𝐵) | |
| 3 | 2 | anbi2i 623 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
| 4 | eldif 3934 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | 3, 4 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 6 | 5 | imbi1i 349 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝜑)) |
| 7 | 1, 6 | bitr3i 277 | . 2 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∉ 𝐵 → 𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝜑)) |
| 8 | 7 | ralbii2 3077 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∉ wnel 3035 ∀wral 3050 ∖ cdif 3921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nel 3036 df-ral 3051 df-v 3459 df-dif 3927 |
| This theorem is referenced by: raldifsnb 4770 coprmproddvdslem 16668 poimirlem26 37599 aacllem 49506 |
| Copyright terms: Public domain | W3C validator |