![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raldifb | Structured version Visualization version GIF version |
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
Ref | Expression |
---|---|
raldifb | ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 449 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∉ 𝐵 → 𝜑))) | |
2 | df-nel 3037 | . . . . . 6 ⊢ (𝑥 ∉ 𝐵 ↔ ¬ 𝑥 ∈ 𝐵) | |
3 | 2 | anbi2i 621 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
4 | eldif 3957 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | 3, 4 | bitr4i 277 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
6 | 5 | imbi1i 348 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝜑)) |
7 | 1, 6 | bitr3i 276 | . 2 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∉ 𝐵 → 𝜑)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) → 𝜑)) |
8 | 7 | ralbii2 3079 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2099 ∉ wnel 3036 ∀wral 3051 ∖ cdif 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nel 3037 df-ral 3052 df-v 3464 df-dif 3950 |
This theorem is referenced by: raldifsnb 4805 coprmproddvdslem 16663 poimirlem26 37347 aacllem 48549 |
Copyright terms: Public domain | W3C validator |