| Step | Hyp | Ref
| Expression |
| 1 | | ltso 11341 |
. . . 4
⊢ < Or
ℝ |
| 2 | 1 | a1i 11 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → < Or ℝ) |
| 3 | | simplr 769 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
∈ ℝ) |
| 4 | | vex 3484 |
. . . . . . 7
⊢ 𝑢 ∈ V |
| 5 | | eqeq1 2741 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑦 = (vol‘𝑏) ↔ 𝑢 = (vol‘𝑏))) |
| 6 | 5 | anbi2d 630 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) |
| 7 | 6 | rexbidv 3179 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) |
| 8 | 4, 7 | elab 3679 |
. . . . . 6
⊢ (𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏))) |
| 9 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏))) → 𝑏 ⊆ 𝐴) |
| 10 | | ovolss 25520 |
. . . . . . . . . . 11
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → (vol*‘𝑏) ≤ (vol*‘𝐴)) |
| 11 | | sstr 3992 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → 𝑏 ⊆ ℝ) |
| 12 | | ovolcl 25513 |
. . . . . . . . . . . . 13
⊢ (𝑏 ⊆ ℝ →
(vol*‘𝑏) ∈
ℝ*) |
| 13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → (vol*‘𝑏) ∈
ℝ*) |
| 14 | | ovolcl 25513 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → (vol*‘𝐴) ∈
ℝ*) |
| 16 | | xrlenlt 11326 |
. . . . . . . . . . . 12
⊢
(((vol*‘𝑏)
∈ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) →
((vol*‘𝑏) ≤
(vol*‘𝐴) ↔ ¬
(vol*‘𝐴) <
(vol*‘𝑏))) |
| 17 | 13, 15, 16 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → ((vol*‘𝑏) ≤ (vol*‘𝐴) ↔ ¬ (vol*‘𝐴) < (vol*‘𝑏))) |
| 18 | 10, 17 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → ¬
(vol*‘𝐴) <
(vol*‘𝑏)) |
| 19 | 18 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑏 ⊆ 𝐴) → ¬ (vol*‘𝐴) < (vol*‘𝑏)) |
| 20 | 9, 19 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → ¬ (vol*‘𝐴) < (vol*‘𝑏)) |
| 21 | | simprrr 782 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → 𝑢 = (vol‘𝑏)) |
| 22 | | uniretop 24783 |
. . . . . . . . . . . . . . 15
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 23 | 22 | cldss 23037 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ) |
| 24 | | dfss4 4269 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ⊆ ℝ ↔ (ℝ
∖ (ℝ ∖ 𝑏)) = 𝑏) |
| 25 | 23, 24 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) = 𝑏) |
| 26 | | rembl 25575 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ dom vol |
| 27 | 22 | cldopn 23039 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran
(,))) |
| 28 | | opnmbl 25637 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
∖ 𝑏) ∈
(topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol) |
| 30 | | difmbl 25578 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖
(ℝ ∖ 𝑏)) ∈
dom vol) |
| 31 | 26, 29, 30 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) ∈ dom
vol) |
| 32 | 25, 31 | eqeltrrd 2842 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol) |
| 33 | | mblvol 25565 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ dom vol →
(vol‘𝑏) =
(vol*‘𝑏)) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑏) = (vol*‘𝑏)) |
| 35 | 34 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → (vol‘𝑏) = (vol*‘𝑏)) |
| 36 | 21, 35 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → 𝑢 = (vol*‘𝑏)) |
| 37 | 36 | breq2d 5155 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → ((vol*‘𝐴) < 𝑢 ↔ (vol*‘𝐴) < (vol*‘𝑏))) |
| 38 | 20, 37 | mtbird 325 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → ¬ (vol*‘𝐴) < 𝑢) |
| 39 | 38 | rexlimdvaa 3156 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)) → ¬ (vol*‘𝐴) < 𝑢)) |
| 40 | 8, 39 | biimtrid 242 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → (𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} → ¬ (vol*‘𝐴) < 𝑢)) |
| 41 | 40 | ad2antrr 726 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (𝑢 ∈
{𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} → ¬ (vol*‘𝐴) < 𝑢)) |
| 42 | 41 | imp 406 |
. . 3
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ 𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}) → ¬ (vol*‘𝐴) < 𝑢) |
| 43 | | 1rp 13038 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
| 44 | | eqid 2737 |
. . . . . . . . . 10
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
| 45 | 44 | ovolgelb 25515 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 1 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) +
1))) |
| 46 | 43, 45 | mp3an3 1452 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → ∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1))) |
| 47 | | elmapi 8889 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
| 48 | | ssid 4006 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 49 | 44 | ovollb 25514 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑓) ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
| 50 | 48, 49 | mpan2 691 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑓)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (vol*‘∪ ran ((,) ∘
𝑓)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
| 52 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢ ((abs
∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) |
| 53 | 52, 44 | ovolsf 25507 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)):ℕ⟶(0[,)+∞)) |
| 54 | | frn 6743 |
. . . . . . . . . . . . . . . 16
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞)) |
| 55 | | icossxr 13472 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ ℝ* |
| 56 | 54, 55 | sstrdi 3996 |
. . . . . . . . . . . . . . 15
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆
ℝ*) |
| 57 | | supxrcl 13357 |
. . . . . . . . . . . . . . 15
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ*) |
| 58 | 53, 56, 57 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
| 59 | | peano2re 11434 |
. . . . . . . . . . . . . . 15
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘𝐴) + 1) ∈ ℝ) |
| 60 | 59 | rexrd 11311 |
. . . . . . . . . . . . . 14
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘𝐴) + 1) ∈
ℝ*) |
| 61 | | rncoss 5986 |
. . . . . . . . . . . . . . . . . 18
⊢ ran ((,)
∘ 𝑓) ⊆ ran
(,) |
| 62 | 61 | unissi 4916 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
(,) |
| 63 | | unirnioo 13489 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ =
∪ ran (,) |
| 64 | 62, 63 | sseqtrri 4033 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ |
| 65 | | ovolcl 25513 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
| 66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ* |
| 67 | | xrletr 13200 |
. . . . . . . . . . . . . . 15
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘𝐴) + 1) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 68 | 66, 67 | mp3an1 1450 |
. . . . . . . . . . . . . 14
⊢ ((sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘𝐴) + 1) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 69 | 58, 60, 68 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (((vol*‘∪ ran ((,) ∘
𝑓)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∧ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + 1))
→ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 70 | 51, 69 | mpand 695 |
. . . . . . . . . . . 12
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )
≤ ((vol*‘𝐴) + 1)
→ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 71 | 70 | adantll 714 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )
≤ ((vol*‘𝐴) + 1)
→ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 72 | 47, 71 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)) →
(sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + 1) →
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 73 | 72 | anim2d 612 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)) →
((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)))) |
| 74 | 73 | reximdva 3168 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)))) |
| 75 | 46, 74 | mpd 15 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → ∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 76 | | rexex 3076 |
. . . . . . 7
⊢
(∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → ∃𝑓(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 77 | 75, 76 | syl 17 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → ∃𝑓(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 78 | 77 | ad2antrr 726 |
. . . . 5
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
∃𝑓(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 79 | | difss 4136 |
. . . . . . . . . . . . . 14
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 80 | 79, 64 | sstri 3993 |
. . . . . . . . . . . . 13
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ |
| 81 | | ovolcl 25513 |
. . . . . . . . . . . . 13
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈
ℝ*) |
| 82 | 80, 81 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈
ℝ* |
| 83 | 59, 82 | jctil 519 |
. . . . . . . . . . 11
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) ∈ ℝ*
∧ ((vol*‘𝐴) + 1)
∈ ℝ)) |
| 84 | 83 | ad4antlr 733 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ)) |
| 85 | | ovolss 25520 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 86 | 79, 64, 85 | mp2an 692 |
. . . . . . . . . . . . . 14
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
| 87 | | xrletr 13200 |
. . . . . . . . . . . . . . . 16
⊢
(((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ* ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ*) → (((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
| 88 | 82, 66, 87 | mp3an12 1453 |
. . . . . . . . . . . . . . 15
⊢
(((vol*‘𝐴) +
1) ∈ ℝ* → (((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
| 89 | 60, 88 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((vol*‘𝐴)
∈ ℝ → (((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
| 90 | 86, 89 | mpani 696 |
. . . . . . . . . . . . 13
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘∪ ran ((,)
∘ 𝑓)) ≤
((vol*‘𝐴) + 1) →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
| 91 | 90 | ad4antlr 733 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑓)) →
((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
| 92 | 91 | impr 454 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1)) |
| 93 | | ovolge0 25516 |
. . . . . . . . . . . 12
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ → 0 ≤
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 94 | 80, 93 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 0 ≤
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 95 | 92, 94 | jctil 519 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (0 ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
| 96 | | xrrege0 13216 |
. . . . . . . . . 10
⊢
((((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ) ∧ (0 ≤ (vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 97 | 84, 95, 96 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 98 | | resubcl 11573 |
. . . . . . . . . . . . . 14
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → ((vol*‘𝐴) − 𝑢) ∈ ℝ) |
| 99 | 98 | adantrr 717 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘𝐴) −
𝑢) ∈
ℝ) |
| 100 | | posdif 11756 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝑢 <
(vol*‘𝐴) ↔ 0
< ((vol*‘𝐴)
− 𝑢))) |
| 101 | 100 | ancoms 458 |
. . . . . . . . . . . . . . 15
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → (𝑢
< (vol*‘𝐴) ↔
0 < ((vol*‘𝐴)
− 𝑢))) |
| 102 | 101 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → (𝑢
< (vol*‘𝐴) →
0 < ((vol*‘𝐴)
− 𝑢))) |
| 103 | 102 | impr 454 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) → 0
< ((vol*‘𝐴)
− 𝑢)) |
| 104 | 99, 103 | elrpd 13074 |
. . . . . . . . . . . 12
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘𝐴) −
𝑢) ∈
ℝ+) |
| 105 | 104 | rphalfcld 13089 |
. . . . . . . . . . 11
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ+) |
| 106 | 3, 105 | sylan 580 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ+) |
| 107 | 106 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (((vol*‘𝐴) − 𝑢) / 2) ∈
ℝ+) |
| 108 | | eqid 2737 |
. . . . . . . . . . 11
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − )
∘ 𝑔)) |
| 109 | 108 | ovolgelb 25515 |
. . . . . . . . . 10
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ ∧ (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ+) →
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 110 | 80, 109 | mp3an1 1450 |
. . . . . . . . 9
⊢
(((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ ∧ (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ+) →
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 111 | 97, 107, 110 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 112 | | elmapi 8889 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
| 113 | | ssid 4006 |
. . . . . . . . . . . . . 14
⊢ ∪ ran ((,) ∘ 𝑔) ⊆ ∪ ran
((,) ∘ 𝑔) |
| 114 | 108 | ovollb 25514 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑔) ⊆ ∪ ran ((,) ∘ 𝑔)) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < )) |
| 115 | 113, 114 | mpan2 691 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑔)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, <
)) |
| 116 | 115 | adantl 481 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (vol*‘∪ ran ((,) ∘
𝑔)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑔)), ℝ*, <
)) |
| 117 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔) |
| 118 | 117, 108 | ovolsf 25507 |
. . . . . . . . . . . . . 14
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑔)):ℕ⟶(0[,)+∞)) |
| 119 | | frn 6743 |
. . . . . . . . . . . . . . 15
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑔)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⊆ (0[,)+∞)) |
| 120 | 119, 55 | sstrdi 3996 |
. . . . . . . . . . . . . 14
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑔)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⊆
ℝ*) |
| 121 | | supxrcl 13357 |
. . . . . . . . . . . . . 14
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈
ℝ*) |
| 122 | 118, 120,
121 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ∈ ℝ*) |
| 123 | 99 | rehalfcld 12513 |
. . . . . . . . . . . . . . . . 17
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ) |
| 124 | 3, 123 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ) |
| 126 | 97, 125 | readdcld 11290 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ) |
| 127 | 126 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈
ℝ*) |
| 128 | | rncoss 5986 |
. . . . . . . . . . . . . . . . 17
⊢ ran ((,)
∘ 𝑔) ⊆ ran
(,) |
| 129 | 128 | unissi 4916 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran ((,) ∘ 𝑔) ⊆ ∪ ran
(,) |
| 130 | 129, 63 | sseqtrri 4033 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran ((,) ∘ 𝑔) ⊆ ℝ |
| 131 | | ovolcl 25513 |
. . . . . . . . . . . . . . 15
⊢ (∪ ran ((,) ∘ 𝑔) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈
ℝ*) |
| 132 | 130, 131 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(vol*‘∪ ran ((,) ∘ 𝑔)) ∈
ℝ* |
| 133 | | xrletr 13200 |
. . . . . . . . . . . . . 14
⊢
(((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ*
∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑔)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 134 | 132, 133 | mp3an1 1450 |
. . . . . . . . . . . . 13
⊢ ((sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑔)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 135 | 122, 127,
134 | syl2anr 597 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (((vol*‘∪ ran ((,) ∘
𝑔)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∧ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 136 | 116, 135 | mpand 695 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )
≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 137 | 112, 136 | sylan2 593 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 138 | 137 | anim2d 612 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (((∪
ran ((,) ∘ 𝑓) ∖
𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))))) |
| 139 | 138 | reximdva 3168 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))))) |
| 140 | 111, 139 | mpd 15 |
. . . . . . 7
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 141 | | rexex 3076 |
. . . . . . 7
⊢
(∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → ∃𝑔((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 142 | 140, 141 | syl 17 |
. . . . . 6
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑔((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 143 | 59, 66 | jctil 519 |
. . . . . . . . . . . 12
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘∪ ran ((,)
∘ 𝑓)) ∈
ℝ* ∧ ((vol*‘𝐴) + 1) ∈ ℝ)) |
| 144 | 143 | ad3antlr 731 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ)) |
| 145 | | ovolge0 25516 |
. . . . . . . . . . . . . 14
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
| 146 | 64, 145 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) |
| 147 | 146 | jctl 523 |
. . . . . . . . . . . 12
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1) → (0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 148 | 147 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (0 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
| 149 | | xrrege0 13216 |
. . . . . . . . . . 11
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ ((vol*‘𝐴) + 1)
∈ ℝ) ∧ (0 ≤ (vol*‘∪ ran ((,)
∘ 𝑓)) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 150 | 144, 148,
149 | syl2an 596 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 151 | 150, 125 | resubcld 11691 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ) |
| 152 | 150, 107 | ltsubrpd 13109 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 153 | | retop 24782 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
| 154 | | retopbas 24781 |
. . . . . . . . . . . . 13
⊢ ran (,)
∈ TopBases |
| 155 | | bastg 22973 |
. . . . . . . . . . . . 13
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
| 156 | 154, 155 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran (,)
⊆ (topGen‘ran (,)) |
| 157 | 61, 156 | sstri 3993 |
. . . . . . . . . . 11
⊢ ran ((,)
∘ 𝑓) ⊆
(topGen‘ran (,)) |
| 158 | | uniopn 22903 |
. . . . . . . . . . 11
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,))) |
| 159 | 153, 157,
158 | mp2an 692 |
. . . . . . . . . 10
⊢ ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,)) |
| 160 | | mblfinlem2 37665 |
. . . . . . . . . 10
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
| 161 | 159, 160 | mp3an1 1450 |
. . . . . . . . 9
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
| 162 | 151, 152,
161 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
| 163 | 162 | adantr 480 |
. . . . . . 7
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
| 164 | | indif2 4281 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ (ℝ ∖ ∪ ran ((,) ∘ 𝑔))) = ((𝑠 ∩ ℝ) ∖ ∪ ran ((,) ∘ 𝑔)) |
| 165 | 22 | cldss 23037 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → 𝑠 ⊆ ℝ) |
| 166 | | dfss2 3969 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ⊆ ℝ ↔ (𝑠 ∩ ℝ) = 𝑠) |
| 167 | 165, 166 | sylib 218 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∩ ℝ) = 𝑠) |
| 168 | 167 | difeq1d 4125 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑠 ∩ ℝ) ∖ ∪ ran ((,) ∘ 𝑔)) = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) |
| 169 | 164, 168 | eqtrid 2789 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∩ (ℝ ∖ ∪ ran ((,) ∘ 𝑔))) = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) |
| 170 | 128, 156 | sstri 3993 |
. . . . . . . . . . . . . . . . 17
⊢ ran ((,)
∘ 𝑔) ⊆
(topGen‘ran (,)) |
| 171 | | uniopn 22903 |
. . . . . . . . . . . . . . . . 17
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑔) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑔) ∈ (topGen‘ran
(,))) |
| 172 | 153, 170,
171 | mp2an 692 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran ((,) ∘ 𝑔) ∈ (topGen‘ran
(,)) |
| 173 | 22 | opncld 23041 |
. . . . . . . . . . . . . . . 16
⊢
(((topGen‘ran (,)) ∈ Top ∧ ∪
ran ((,) ∘ 𝑔) ∈
(topGen‘ran (,))) → (ℝ ∖ ∪
ran ((,) ∘ 𝑔)) ∈
(Clsd‘(topGen‘ran (,)))) |
| 174 | 153, 172,
173 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
∖ ∪ ran ((,) ∘ 𝑔)) ∈ (Clsd‘(topGen‘ran
(,))) |
| 175 | | incld 23051 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (ℝ ∖ ∪ ran ((,) ∘ 𝑔)) ∈ (Clsd‘(topGen‘ran
(,)))) → (𝑠 ∩
(ℝ ∖ ∪ ran ((,) ∘ 𝑔))) ∈
(Clsd‘(topGen‘ran (,)))) |
| 176 | 174, 175 | mpan2 691 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∩ (ℝ ∖ ∪ ran ((,) ∘ 𝑔))) ∈ (Clsd‘(topGen‘ran
(,)))) |
| 177 | 169, 176 | eqeltrrd 2842 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈
(Clsd‘(topGen‘ran (,)))) |
| 178 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 179 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ⊆ ∪ ran ((,) ∘ 𝑔)) |
| 180 | 178, 179 | ssdif2d 4148 |
. . . . . . . . . . . . . 14
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
| 181 | | dfin4 4278 |
. . . . . . . . . . . . . . 15
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) = (∪ ran ((,)
∘ 𝑓) ∖ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 182 | | inss2 4238 |
. . . . . . . . . . . . . . 15
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ 𝐴 |
| 183 | 181, 182 | eqsstrri 4031 |
. . . . . . . . . . . . . 14
⊢ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆ 𝐴 |
| 184 | 180, 183 | sstrdi 3996 |
. . . . . . . . . . . . 13
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴) |
| 185 | | sseq1 4009 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
(𝑏 ⊆ 𝐴 ↔ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴)) |
| 186 | 185 | anbi1d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
((𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) ↔ ((𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)))) |
| 187 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) = 𝑏 → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏)) |
| 188 | 187 | eqcoms 2745 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
(vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) |
| 189 | 188 | biantrud 531 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 ↔ ((𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)))) |
| 190 | 186, 189 | bitr4d 282 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
((𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) ↔ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴)) |
| 191 | 190 | rspcev 3622 |
. . . . . . . . . . . . 13
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
| 192 | 177, 184,
191 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ ((∪ ran
((,) ∘ 𝑓) ∖
𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓))) →
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏))) |
| 193 | 192 | an12s 649 |
. . . . . . . . . . 11
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓))) →
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏))) |
| 194 | 193 | adantrrr 725 |
. . . . . . . . . 10
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
| 195 | 194 | adantlr 715 |
. . . . . . . . 9
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
| 196 | 195 | adantll 714 |
. . . . . . . 8
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
| 197 | | difss 4136 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 |
| 198 | | ovolsscl 25521 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ∈ ℝ) |
| 199 | 197, 198 | mp3an1 1450 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℝ) |
| 200 | 199 | ad5antr 734 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℝ) |
| 201 | | simp-6r 788 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘𝐴) ∈ ℝ) |
| 202 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴)) → 𝑢 ∈ ℝ) |
| 203 | 202 | ad4antlr 733 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → 𝑢 ∈ ℝ) |
| 204 | | difdif2 4296 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) = ((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) |
| 205 | 204 | fveq2i 6909 |
. . . . . . . . . . 11
⊢
(vol*‘(𝐴
∖ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) = (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) |
| 206 | | difss 4136 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∖ 𝑠) ⊆ 𝐴 |
| 207 | | inss1 4237 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 |
| 208 | 206, 207 | unssi 4191 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ⊆ 𝐴 |
| 209 | | ovolsscl 25521 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘((𝐴 ∖
𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
| 210 | 208, 209 | mp3an1 1450 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
| 211 | 210 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
| 212 | | ovolsscl 25521 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∖ 𝑠) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∖
𝑠)) ∈
ℝ) |
| 213 | 206, 212 | mp3an1 1450 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∖ 𝑠)) ∈ ℝ) |
| 214 | 213 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) ∈ ℝ) |
| 215 | | ovolsscl 25521 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ∈ ℝ) |
| 216 | 207, 215 | mp3an1 1450 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ∈
ℝ) |
| 217 | 216 | ad5antr 734 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ∈
ℝ) |
| 218 | 214, 217 | readdcld 11290 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∖ 𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
| 219 | 3, 202, 98 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘𝐴) −
𝑢) ∈
ℝ) |
| 220 | 219 | ad3antrrr 730 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘𝐴) − 𝑢) ∈ ℝ) |
| 221 | | ssdifss 4140 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝐴 ∖ 𝑠) ⊆ ℝ) |
| 222 | 221 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∖
𝑠) ⊆
ℝ) |
| 223 | | ssinss1 4246 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ ℝ) |
| 224 | 223 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∩
∪ ran ((,) ∘ 𝑔)) ⊆ ℝ) |
| 225 | | ovolun 25534 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∖ 𝑠) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ 𝑠)) ∈ ℝ) ∧ ((𝐴 ∩ ∪ ran ((,)
∘ 𝑔)) ⊆ ℝ
∧ (vol*‘(𝐴 ∩
∪ ran ((,) ∘ 𝑔))) ∈ ℝ)) →
(vol*‘((𝐴 ∖
𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ≤
((vol*‘(𝐴 ∖
𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))))) |
| 226 | 222, 213,
224, 216, 225 | syl22anc 839 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ≤
((vol*‘(𝐴 ∖
𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))))) |
| 227 | 226 | ad5antr 734 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ≤
((vol*‘(𝐴 ∖
𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))))) |
| 228 | 124 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ) |
| 229 | 228 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ) |
| 230 | 150 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 231 | | simprl 771 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓)) |
| 232 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
| 233 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑠) ∈
ℝ) |
| 234 | 64, 233 | mp3an2 1451 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑠) ∈
ℝ) |
| 235 | 231, 232,
234 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘𝑠) ∈ ℝ) |
| 236 | 230, 235 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠)) ∈ ℝ) |
| 237 | | ssdif 4144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝐴 ∖ 𝑠) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝑠)) |
| 238 | | difss 4136 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 239 | 238, 64 | sstri 3993 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ℝ |
| 240 | | ovolss 25520 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∖ 𝑠) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝑠) ∧ (∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ℝ) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
| 241 | 237, 239,
240 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
| 242 | 241 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
| 243 | 242 | ad3antlr 731 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
| 244 | | eleq1w 2824 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑠 → (𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol)) |
| 245 | 244, 32 | vtoclga 3577 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → 𝑠 ∈ dom vol) |
| 246 | 245 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → 𝑠 ∈ dom vol) |
| 247 | | mblsplit 25567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 ∈ dom vol ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)))) |
| 248 | 64, 247 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈ dom vol ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)))) |
| 249 | 246, 232,
248 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)))) |
| 250 | 249 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) = (vol*‘∪ ran ((,) ∘ 𝑓))) |
| 251 | 230 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℂ) |
| 252 | | inss1 4237 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) |
| 253 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((∪ ran ((,) ∘ 𝑓) ∩ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
| 254 | 252, 64, 253 | mp3an12 1453 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
| 255 | 150, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
| 256 | 255 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
| 257 | 256 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℂ) |
| 258 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℝ) |
| 259 | 238, 64, 258 | mp3an12 1453 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℝ) |
| 260 | 150, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℝ) |
| 261 | 260 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℂ) |
| 262 | 261 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℂ) |
| 263 | 251, 257,
262 | subaddd 11638 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ↔ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) = (vol*‘∪ ran ((,) ∘ 𝑓)))) |
| 264 | 250, 263 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
| 265 | | sseqin2 4223 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ↔ (∪ ran
((,) ∘ 𝑓) ∩ 𝑠) = 𝑠) |
| 266 | 265 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) → (∪ ran
((,) ∘ 𝑓) ∩ 𝑠) = 𝑠) |
| 267 | 266 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) = (vol*‘𝑠)) |
| 268 | 267 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
| 269 | 268 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
| 270 | 269 | ad2antll 729 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
| 271 | 264, 270 | eqtr3d 2779 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
| 272 | 243, 271 | breqtrd 5169 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) ≤ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
| 273 | | simprrr 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)) |
| 274 | 230, 229,
235, 273 | ltsub23d 11868 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠)) < (((vol*‘𝐴) − 𝑢) / 2)) |
| 275 | 214, 236,
229, 272, 274 | lelttrd 11419 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) < (((vol*‘𝐴) − 𝑢) / 2)) |
| 276 | 216 | ad4antr 732 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ∈ ℝ) |
| 277 | 126, 132 | jctil 519 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ* ∧
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ)) |
| 278 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) |
| 279 | | ovolge0 25516 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ ran ((,) ∘ 𝑔) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑔))) |
| 280 | 130, 279 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑔)) |
| 281 | 278, 280 | jctil 519 |
. . . . . . . . . . . . . . . . . 18
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (0 ≤ (vol*‘∪ ran ((,) ∘ 𝑔)) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 282 | | xrrege0 13216 |
. . . . . . . . . . . . . . . . . 18
⊢
((((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ*
∧ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ) ∧ (0 ≤
(vol*‘∪ ran ((,) ∘ 𝑔)) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) |
| 283 | 277, 281,
282 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) |
| 284 | | difss 4136 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆ ∪ ran ((,) ∘ 𝑔) |
| 285 | | ovolsscl 25521 |
. . . . . . . . . . . . . . . . . 18
⊢ (((∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ ∪ ran ((,)
∘ 𝑔) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) →
(vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℝ) |
| 286 | 284, 130,
285 | mp3an12 1453 |
. . . . . . . . . . . . . . . . 17
⊢
((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℝ) |
| 287 | 283, 286 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℝ) |
| 288 | | ssun2 4179 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ran ((,) ∘ 𝑔) ∩ 𝐴) ⊆ ((∪ ran
((,) ∘ 𝑔) ∖
∪ ran ((,) ∘ 𝑓)) ∪ (∪ ran
((,) ∘ 𝑔) ∩ 𝐴)) |
| 289 | | incom 4209 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) = (∪ ran ((,)
∘ 𝑔) ∩ 𝐴) |
| 290 | | difdif2 4296 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = ((∪ ran ((,) ∘ 𝑔) ∖ ∪ ran
((,) ∘ 𝑓)) ∪
(∪ ran ((,) ∘ 𝑔) ∩ 𝐴)) |
| 291 | 288, 289,
290 | 3sstr4i 4035 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 292 | 284, 130 | sstri 3993 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆
ℝ |
| 293 | 291, 292 | pm3.2i 470 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ⊆ ℝ) |
| 294 | | ovolss 25520 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ⊆ ℝ) →
(vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ≤ (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 295 | 293, 294 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ≤ (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 296 | | opnmbl 25637 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) → ∪ ran ((,) ∘ 𝑓) ∈ dom vol) |
| 297 | 159, 296 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ ran ((,) ∘ 𝑓) ∈ dom vol |
| 298 | | difmbl 25578 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol) |
| 299 | 297, 298 | mpan 690 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ dom vol → (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol) |
| 300 | 299 | ad4antlr 733 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol) |
| 301 | | mblsplit 25567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol ∧ ∪ ran ((,) ∘ 𝑔) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑔)) = ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
| 302 | 130, 301 | mp3an2 1451 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑔)) = ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
| 303 | 300, 283,
302 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) = ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
| 304 | | sseqin2 4223 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ↔
(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 305 | 304 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) →
(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
| 306 | 305 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) →
(vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
| 307 | 306 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
| 308 | 307 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
| 309 | 303, 308 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = (vol*‘∪ ran ((,) ∘ 𝑔))) |
| 310 | 283 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℂ) |
| 311 | 97 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
| 312 | 311 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℂ) |
| 313 | 287 | recnd 11289 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℂ) |
| 314 | 310, 312,
313 | subaddd 11638 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ↔
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = (vol*‘∪ ran ((,) ∘ 𝑔)))) |
| 315 | 309, 314 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
| 316 | | simprr 773 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) |
| 317 | 283, 311,
228 | lesubadd2d 11862 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) ≤ (((vol*‘𝐴) − 𝑢) / 2) ↔ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
| 318 | 316, 317 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) ≤ (((vol*‘𝐴) − 𝑢) / 2)) |
| 319 | 315, 318 | eqbrtrrd 5167 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ≤
(((vol*‘𝐴) −
𝑢) / 2)) |
| 320 | 276, 287,
228, 295, 319 | letrd 11418 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ≤ (((vol*‘𝐴) − 𝑢) / 2)) |
| 321 | 320 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ≤
(((vol*‘𝐴) −
𝑢) / 2)) |
| 322 | 214, 217,
229, 229, 275, 321 | ltleaddd 11884 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∖ 𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) <
((((vol*‘𝐴) −
𝑢) / 2) +
(((vol*‘𝐴) −
𝑢) / 2))) |
| 323 | 98 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → ((vol*‘𝐴) − 𝑢) ∈ ℂ) |
| 324 | 323 | 2halvesd 12512 |
. . . . . . . . . . . . . . . 16
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → ((((vol*‘𝐴) − 𝑢) / 2) + (((vol*‘𝐴) − 𝑢) / 2)) = ((vol*‘𝐴) − 𝑢)) |
| 325 | 324 | adantll 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑢 ∈
ℝ) → ((((vol*‘𝐴) − 𝑢) / 2) + (((vol*‘𝐴) − 𝑢) / 2)) = ((vol*‘𝐴) − 𝑢)) |
| 326 | 325 | ad2ant2r 747 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((((vol*‘𝐴) −
𝑢) / 2) +
(((vol*‘𝐴) −
𝑢) / 2)) =
((vol*‘𝐴) −
𝑢)) |
| 327 | 326 | ad3antrrr 730 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((((vol*‘𝐴) − 𝑢) / 2) + (((vol*‘𝐴) − 𝑢) / 2)) = ((vol*‘𝐴) − 𝑢)) |
| 328 | 322, 327 | breqtrd 5169 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∖ 𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) <
((vol*‘𝐴) −
𝑢)) |
| 329 | 211, 218,
220, 227, 328 | lelttrd 11419 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) <
((vol*‘𝐴) −
𝑢)) |
| 330 | 205, 329 | eqbrtrid 5178 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) <
((vol*‘𝐴) −
𝑢)) |
| 331 | 200, 201,
203, 330 | ltsub13d 11869 |
. . . . . . . . 9
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → 𝑢 < ((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
| 332 | | opnmbl 25637 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ran ((,) ∘ 𝑔) ∈ (topGen‘ran (,)) → ∪ ran ((,) ∘ 𝑔) ∈ dom vol) |
| 333 | 172, 332 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran ((,) ∘ 𝑔) ∈ dom vol |
| 334 | | difmbl 25578 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ dom vol ∧ ∪ ran ((,) ∘ 𝑔) ∈ dom vol) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈ dom
vol) |
| 335 | 245, 333,
334 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈ dom
vol) |
| 336 | | mblvol 25565 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol → (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol*‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) |
| 337 | 335, 336 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
| 338 | 337 | ad2antrl 728 |
. . . . . . . . . . . 12
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
| 339 | | sseqin2 4223 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) = (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) |
| 340 | 184, 339 | sylib 218 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) = (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) |
| 341 | 340 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
| 342 | 341 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
| 343 | 342 | ad2ant2rl 749 |
. . . . . . . . . . . 12
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
| 344 | 338, 343 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) |
| 345 | 344 | adantll 714 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) |
| 346 | 335 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈ dom
vol) |
| 347 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
| 348 | | mblsplit 25567 |
. . . . . . . . . . . . . 14
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘𝐴) =
((vol*‘(𝐴 ∩
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) + (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
| 349 | 348 | 3expb 1121 |
. . . . . . . . . . . . 13
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) →
(vol*‘𝐴) =
((vol*‘(𝐴 ∩
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) + (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
| 350 | 349 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) →
((vol*‘(𝐴 ∩
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) + (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘𝐴)) |
| 351 | 346, 347,
350 | syl2anr 597 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) +
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) = (vol*‘𝐴)) |
| 352 | | recn 11245 |
. . . . . . . . . . . . . 14
⊢
((vol*‘𝐴)
∈ ℝ → (vol*‘𝐴) ∈ ℂ) |
| 353 | 352 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘𝐴) ∈ ℂ) |
| 354 | 199 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℂ) |
| 355 | | inss1 4237 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 |
| 356 | | ovolsscl 25521 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ∈ ℝ) |
| 357 | 355, 356 | mp3an1 1450 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℝ) |
| 358 | 357 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℂ) |
| 359 | 353, 354,
358 | subadd2d 11639 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ↔ ((vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) +
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) = (vol*‘𝐴))) |
| 360 | 359 | ad5antr 734 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ↔ ((vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) +
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) = (vol*‘𝐴))) |
| 361 | 351, 360 | mpbird 257 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) |
| 362 | 345, 361 | eqtr4d 2780 |
. . . . . . . . 9
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
((vol*‘𝐴) −
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))))) |
| 363 | 331, 362 | breqtrrd 5171 |
. . . . . . . 8
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → 𝑢 < (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) |
| 364 | | fvex 6919 |
. . . . . . . . 9
⊢
(vol‘(𝑠
∖ ∪ ran ((,) ∘ 𝑔))) ∈ V |
| 365 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → (𝑣 = (vol‘𝑏) ↔ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏))) |
| 366 | 365 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → ((𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏)))) |
| 367 | 366 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)))) |
| 368 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → (𝑢 < 𝑣 ↔ 𝑢 < (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) |
| 369 | 367, 368 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → ((∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣) ↔ (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) ∧ 𝑢 < (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
| 370 | 364, 369 | spcev 3606 |
. . . . . . . 8
⊢
((∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏)) ∧ 𝑢 < (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
| 371 | 196, 363,
370 | syl2anc 584 |
. . . . . . 7
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
| 372 | 163, 371 | rexlimddv 3161 |
. . . . . 6
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
| 373 | 142, 372 | exlimddv 1935 |
. . . . 5
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
| 374 | 78, 373 | exlimddv 1935 |
. . . 4
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
∃𝑣(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
| 375 | | eqeq1 2741 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (𝑦 = (vol‘𝑏) ↔ 𝑣 = (vol‘𝑏))) |
| 376 | 375 | anbi2d 630 |
. . . . . 6
⊢ (𝑦 = 𝑣 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)))) |
| 377 | 376 | rexbidv 3179 |
. . . . 5
⊢ (𝑦 = 𝑣 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)))) |
| 378 | 377 | rexab 3700 |
. . . 4
⊢
(∃𝑣 ∈
{𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣 ↔ ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
| 379 | 374, 378 | sylibr 234 |
. . 3
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣) |
| 380 | 2, 3, 42, 379 | eqsupd 9497 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘𝐴)) |
| 381 | 380 | eqcomd 2743 |
1
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
= sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) |