Step | Hyp | Ref
| Expression |
1 | | ltso 11055 |
. . . 4
⊢ < Or
ℝ |
2 | 1 | a1i 11 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → < Or ℝ) |
3 | | simplr 766 |
. . 3
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
∈ ℝ) |
4 | | vex 3436 |
. . . . . . 7
⊢ 𝑢 ∈ V |
5 | | eqeq1 2742 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑦 = (vol‘𝑏) ↔ 𝑢 = (vol‘𝑏))) |
6 | 5 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) |
7 | 6 | rexbidv 3226 |
. . . . . . 7
⊢ (𝑦 = 𝑢 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) |
8 | 4, 7 | elab 3609 |
. . . . . 6
⊢ (𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏))) |
9 | | simprl 768 |
. . . . . . . . 9
⊢ ((𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏))) → 𝑏 ⊆ 𝐴) |
10 | | ovolss 24649 |
. . . . . . . . . . 11
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → (vol*‘𝑏) ≤ (vol*‘𝐴)) |
11 | | sstr 3929 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → 𝑏 ⊆ ℝ) |
12 | | ovolcl 24642 |
. . . . . . . . . . . . 13
⊢ (𝑏 ⊆ ℝ →
(vol*‘𝑏) ∈
ℝ*) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → (vol*‘𝑏) ∈
ℝ*) |
14 | | ovolcl 24642 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) ∈
ℝ*) |
15 | 14 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → (vol*‘𝐴) ∈
ℝ*) |
16 | | xrlenlt 11040 |
. . . . . . . . . . . 12
⊢
(((vol*‘𝑏)
∈ ℝ* ∧ (vol*‘𝐴) ∈ ℝ*) →
((vol*‘𝑏) ≤
(vol*‘𝐴) ↔ ¬
(vol*‘𝐴) <
(vol*‘𝑏))) |
17 | 13, 15, 16 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → ((vol*‘𝑏) ≤ (vol*‘𝐴) ↔ ¬ (vol*‘𝐴) < (vol*‘𝑏))) |
18 | 10, 17 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑏 ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ) → ¬
(vol*‘𝐴) <
(vol*‘𝑏)) |
19 | 18 | ancoms 459 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ 𝑏 ⊆ 𝐴) → ¬ (vol*‘𝐴) < (vol*‘𝑏)) |
20 | 9, 19 | sylan2 593 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → ¬ (vol*‘𝐴) < (vol*‘𝑏)) |
21 | | simprrr 779 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → 𝑢 = (vol‘𝑏)) |
22 | | uniretop 23926 |
. . . . . . . . . . . . . . 15
⊢ ℝ =
∪ (topGen‘ran (,)) |
23 | 22 | cldss 22180 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ) |
24 | | dfss4 4192 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ⊆ ℝ ↔ (ℝ
∖ (ℝ ∖ 𝑏)) = 𝑏) |
25 | 23, 24 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) = 𝑏) |
26 | | rembl 24704 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ dom vol |
27 | 22 | cldopn 22182 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran
(,))) |
28 | | opnmbl 24766 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
∖ 𝑏) ∈
(topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol) |
30 | | difmbl 24707 |
. . . . . . . . . . . . . 14
⊢ ((ℝ
∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖
(ℝ ∖ 𝑏)) ∈
dom vol) |
31 | 26, 29, 30 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖
𝑏)) ∈ dom
vol) |
32 | 25, 31 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol) |
33 | | mblvol 24694 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ dom vol →
(vol‘𝑏) =
(vol*‘𝑏)) |
34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘𝑏) = (vol*‘𝑏)) |
35 | 34 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → (vol‘𝑏) = (vol*‘𝑏)) |
36 | 21, 35 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → 𝑢 = (vol*‘𝑏)) |
37 | 36 | breq2d 5086 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → ((vol*‘𝐴) < 𝑢 ↔ (vol*‘𝐴) < (vol*‘𝑏))) |
38 | 20, 37 | mtbird 325 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧ (𝑏 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)))) → ¬ (vol*‘𝐴) < 𝑢) |
39 | 38 | rexlimdvaa 3214 |
. . . . . 6
⊢ (𝐴 ⊆ ℝ →
(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑢 = (vol‘𝑏)) → ¬ (vol*‘𝐴) < 𝑢)) |
40 | 8, 39 | syl5bi 241 |
. . . . 5
⊢ (𝐴 ⊆ ℝ → (𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} → ¬ (vol*‘𝐴) < 𝑢)) |
41 | 40 | ad2antrr 723 |
. . . 4
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (𝑢 ∈
{𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))} → ¬ (vol*‘𝐴) < 𝑢)) |
42 | 41 | imp 407 |
. . 3
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ 𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}) → ¬ (vol*‘𝐴) < 𝑢) |
43 | | 1rp 12734 |
. . . . . . . . 9
⊢ 1 ∈
ℝ+ |
44 | | eqid 2738 |
. . . . . . . . . 10
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
45 | 44 | ovolgelb 24644 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ ∧ 1 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) +
1))) |
46 | 43, 45 | mp3an3 1449 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → ∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1))) |
47 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
48 | | ssid 3943 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
((,) ∘ 𝑓) |
49 | 44 | ovollb 24643 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑓) ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < )) |
50 | 48, 49 | mpan2 688 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑓)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
51 | 50 | adantl 482 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (vol*‘∪ ran ((,) ∘
𝑓)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, <
)) |
52 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((abs
∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓) |
53 | 52, 44 | ovolsf 24636 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑓)):ℕ⟶(0[,)+∞)) |
54 | | frn 6607 |
. . . . . . . . . . . . . . . 16
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞)) |
55 | | icossxr 13164 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ ℝ* |
56 | 54, 55 | sstrdi 3933 |
. . . . . . . . . . . . . . 15
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆
ℝ*) |
57 | | supxrcl 13049 |
. . . . . . . . . . . . . . 15
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ*) |
58 | 53, 56, 57 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ∈ ℝ*) |
59 | | peano2re 11148 |
. . . . . . . . . . . . . . 15
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘𝐴) + 1) ∈ ℝ) |
60 | 59 | rexrd 11025 |
. . . . . . . . . . . . . 14
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘𝐴) + 1) ∈
ℝ*) |
61 | | rncoss 5881 |
. . . . . . . . . . . . . . . . . 18
⊢ ran ((,)
∘ 𝑓) ⊆ ran
(,) |
62 | 61 | unissi 4848 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ∪ ran
(,) |
63 | | unirnioo 13181 |
. . . . . . . . . . . . . . . . 17
⊢ ℝ =
∪ ran (,) |
64 | 62, 63 | sseqtrri 3958 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ |
65 | | ovolcl 24642 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ*) |
66 | 64, 65 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈
ℝ* |
67 | | xrletr 12892 |
. . . . . . . . . . . . . . 15
⊢
(((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘𝐴) + 1) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
68 | 66, 67 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢ ((sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘𝐴) + 1) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
69 | 58, 60, 68 | syl2anr 597 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (((vol*‘∪ ran ((,) ∘
𝑓)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∧ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + 1))
→ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
70 | 51, 69 | mpand 692 |
. . . . . . . . . . . 12
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )
≤ ((vol*‘𝐴) + 1)
→ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
71 | 70 | adantll 711 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )
≤ ((vol*‘𝐴) + 1)
→ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
72 | 47, 71 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)) →
(sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝐴) + 1) →
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
73 | 72 | anim2d 612 |
. . . . . . . . 9
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)) →
((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)))) |
74 | 73 | reximdva 3203 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) ≤ ((vol*‘𝐴) + 1)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)))) |
75 | 46, 74 | mpd 15 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → ∃𝑓
∈ (( ≤ ∩ (ℝ × ℝ)) ↑m
ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
76 | | rexex 3171 |
. . . . . . 7
⊢
(∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → ∃𝑓(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
77 | 75, 76 | syl 17 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → ∃𝑓(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
78 | 77 | ad2antrr 723 |
. . . . 5
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
∃𝑓(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
79 | | difss 4066 |
. . . . . . . . . . . . . 14
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) |
80 | 79, 64 | sstri 3930 |
. . . . . . . . . . . . 13
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ |
81 | | ovolcl 24642 |
. . . . . . . . . . . . 13
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈
ℝ*) |
82 | 80, 81 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈
ℝ* |
83 | 59, 82 | jctil 520 |
. . . . . . . . . . 11
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) ∈ ℝ*
∧ ((vol*‘𝐴) + 1)
∈ ℝ)) |
84 | 83 | ad4antlr 730 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ)) |
85 | | ovolss 24649 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓))) |
86 | 79, 64, 85 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) |
87 | | xrletr 12892 |
. . . . . . . . . . . . . . . 16
⊢
(((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ* ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ*) → (((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
88 | 82, 66, 87 | mp3an12 1450 |
. . . . . . . . . . . . . . 15
⊢
(((vol*‘𝐴) +
1) ∈ ℝ* → (((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
89 | 60, 88 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((vol*‘𝐴)
∈ ℝ → (((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
90 | 86, 89 | mpani 693 |
. . . . . . . . . . . . 13
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘∪ ran ((,)
∘ 𝑓)) ≤
((vol*‘𝐴) + 1) →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
91 | 90 | ad4antlr 730 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ 𝐴 ⊆ ∪ ran
((,) ∘ 𝑓)) →
((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
92 | 91 | impr 455 |
. . . . . . . . . . 11
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1)) |
93 | | ovolge0 24645 |
. . . . . . . . . . . 12
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ → 0 ≤
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
94 | 80, 93 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 0 ≤
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
95 | 92, 94 | jctil 520 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (0 ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) |
96 | | xrrege0 12908 |
. . . . . . . . . 10
⊢
((((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ) ∧ (0 ≤ (vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
97 | 84, 95, 96 | syl2anc 584 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
98 | | resubcl 11285 |
. . . . . . . . . . . . . 14
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → ((vol*‘𝐴) − 𝑢) ∈ ℝ) |
99 | 98 | adantrr 714 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘𝐴) −
𝑢) ∈
ℝ) |
100 | | posdif 11468 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑢 ∈ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝑢 <
(vol*‘𝐴) ↔ 0
< ((vol*‘𝐴)
− 𝑢))) |
101 | 100 | ancoms 459 |
. . . . . . . . . . . . . . 15
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → (𝑢
< (vol*‘𝐴) ↔
0 < ((vol*‘𝐴)
− 𝑢))) |
102 | 101 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → (𝑢
< (vol*‘𝐴) →
0 < ((vol*‘𝐴)
− 𝑢))) |
103 | 102 | impr 455 |
. . . . . . . . . . . . 13
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) → 0
< ((vol*‘𝐴)
− 𝑢)) |
104 | 99, 103 | elrpd 12769 |
. . . . . . . . . . . 12
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘𝐴) −
𝑢) ∈
ℝ+) |
105 | 104 | rphalfcld 12784 |
. . . . . . . . . . 11
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ+) |
106 | 3, 105 | sylan 580 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ+) |
107 | 106 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (((vol*‘𝐴) − 𝑢) / 2) ∈
ℝ+) |
108 | | eqid 2738 |
. . . . . . . . . . 11
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − )
∘ 𝑔)) |
109 | 108 | ovolgelb 24644 |
. . . . . . . . . 10
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ℝ ∧ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ ∧ (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ+) →
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
110 | 80, 109 | mp3an1 1447 |
. . . . . . . . 9
⊢
(((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ ∧ (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ+) →
∃𝑔 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
111 | 97, 107, 110 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
112 | | elmapi 8637 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
113 | | ssid 3943 |
. . . . . . . . . . . . . 14
⊢ ∪ ran ((,) ∘ 𝑔) ⊆ ∪ ran
((,) ∘ 𝑔) |
114 | 108 | ovollb 24643 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ ∪ ran ((,) ∘
𝑔) ⊆ ∪ ran ((,) ∘ 𝑔)) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < )) |
115 | 113, 114 | mpan2 688 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (vol*‘∪ ran
((,) ∘ 𝑔)) ≤
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, <
)) |
116 | 115 | adantl 482 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (vol*‘∪ ran ((,) ∘
𝑔)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑔)), ℝ*, <
)) |
117 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ − ) ∘ 𝑔) = ((abs ∘ − ) ∘ 𝑔) |
118 | 117, 108 | ovolsf 24636 |
. . . . . . . . . . . . . 14
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘
𝑔)):ℕ⟶(0[,)+∞)) |
119 | | frn 6607 |
. . . . . . . . . . . . . . 15
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑔)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⊆ (0[,)+∞)) |
120 | 119, 55 | sstrdi 3933 |
. . . . . . . . . . . . . 14
⊢ (seq1( +
, ((abs ∘ − ) ∘ 𝑔)):ℕ⟶(0[,)+∞) → ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⊆
ℝ*) |
121 | | supxrcl 13049 |
. . . . . . . . . . . . . 14
⊢ (ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)) ⊆ ℝ* → sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈
ℝ*) |
122 | 118, 120,
121 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝑔:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ∈ ℝ*) |
123 | 99 | rehalfcld 12220 |
. . . . . . . . . . . . . . . . 17
⊢
(((vol*‘𝐴)
∈ ℝ ∧ (𝑢
∈ ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ) |
124 | 3, 123 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
(((vol*‘𝐴) −
𝑢) / 2) ∈
ℝ) |
125 | 124 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ) |
126 | 97, 125 | readdcld 11004 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ) |
127 | 126 | rexrd 11025 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈
ℝ*) |
128 | | rncoss 5881 |
. . . . . . . . . . . . . . . . 17
⊢ ran ((,)
∘ 𝑔) ⊆ ran
(,) |
129 | 128 | unissi 4848 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran ((,) ∘ 𝑔) ⊆ ∪ ran
(,) |
130 | 129, 63 | sseqtrri 3958 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran ((,) ∘ 𝑔) ⊆ ℝ |
131 | | ovolcl 24642 |
. . . . . . . . . . . . . . 15
⊢ (∪ ran ((,) ∘ 𝑔) ⊆ ℝ → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈
ℝ*) |
132 | 130, 131 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(vol*‘∪ ran ((,) ∘ 𝑔)) ∈
ℝ* |
133 | | xrletr 12892 |
. . . . . . . . . . . . . 14
⊢
(((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ*
∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑔)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
134 | 132, 133 | mp3an1 1447 |
. . . . . . . . . . . . 13
⊢ ((sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈
ℝ* ∧ ((vol*‘(∪ ran ((,)
∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ*) →
(((vol*‘∪ ran ((,) ∘ 𝑔)) ≤ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − )
∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
135 | 122, 127,
134 | syl2anr 597 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (((vol*‘∪ ran ((,) ∘
𝑔)) ≤ sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∧ sup(ran
seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ≤
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
136 | 116, 135 | mpand 692 |
. . . . . . . . . . 11
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )
≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
137 | 112, 136 | sylan2 593 |
. . . . . . . . . 10
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
138 | 137 | anim2d 612 |
. . . . . . . . 9
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (((∪
ran ((,) ∘ 𝑓) ∖
𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))))) |
139 | 138 | reximdva 3203 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑔)),
ℝ*, < ) ≤ ((vol*‘(∪ ran
((,) ∘ 𝑓) ∖
𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))))) |
140 | 111, 139 | mpd 15 |
. . . . . . 7
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑔 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
141 | | rexex 3171 |
. . . . . . 7
⊢
(∃𝑔 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → ∃𝑔((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
142 | 140, 141 | syl 17 |
. . . . . 6
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑔((∪ ran ((,)
∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
143 | 59, 66 | jctil 520 |
. . . . . . . . . . . 12
⊢
((vol*‘𝐴)
∈ ℝ → ((vol*‘∪ ran ((,)
∘ 𝑓)) ∈
ℝ* ∧ ((vol*‘𝐴) + 1) ∈ ℝ)) |
144 | 143 | ad3antlr 728 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧
((vol*‘𝐴) + 1) ∈
ℝ)) |
145 | | ovolge0 24645 |
. . . . . . . . . . . . . 14
⊢ (∪ ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓))) |
146 | 64, 145 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) |
147 | 146 | jctl 524 |
. . . . . . . . . . . 12
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1) → (0 ≤
(vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
148 | 147 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (0 ≤ (vol*‘∪ ran ((,) ∘ 𝑓)) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) |
149 | | xrrege0 12908 |
. . . . . . . . . . 11
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ*
∧ ((vol*‘𝐴) + 1)
∈ ℝ) ∧ (0 ≤ (vol*‘∪ ran ((,)
∘ 𝑓)) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
150 | 144, 148,
149 | syl2an 596 |
. . . . . . . . . 10
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
151 | 150, 125 | resubcld 11403 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ) |
152 | 150, 107 | ltsubrpd 12804 |
. . . . . . . . 9
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘∪ ran ((,) ∘ 𝑓))) |
153 | | retop 23925 |
. . . . . . . . . . 11
⊢
(topGen‘ran (,)) ∈ Top |
154 | | retopbas 23924 |
. . . . . . . . . . . . 13
⊢ ran (,)
∈ TopBases |
155 | | bastg 22116 |
. . . . . . . . . . . . 13
⊢ (ran (,)
∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) |
156 | 154, 155 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ran (,)
⊆ (topGen‘ran (,)) |
157 | 61, 156 | sstri 3930 |
. . . . . . . . . . 11
⊢ ran ((,)
∘ 𝑓) ⊆
(topGen‘ran (,)) |
158 | | uniopn 22046 |
. . . . . . . . . . 11
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,))) |
159 | 153, 157,
158 | mp2an 689 |
. . . . . . . . . 10
⊢ ∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran
(,)) |
160 | | mblfinlem2 35815 |
. . . . . . . . . 10
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
161 | 159, 160 | mp3an1 1447 |
. . . . . . . . 9
⊢
((((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘∪ ran ((,) ∘ 𝑓))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
162 | 151, 152,
161 | syl2anc 584 |
. . . . . . . 8
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
163 | 162 | adantr 481 |
. . . . . . 7
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran
(,)))(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) |
164 | | indif2 4204 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∩ (ℝ ∖ ∪ ran ((,) ∘ 𝑔))) = ((𝑠 ∩ ℝ) ∖ ∪ ran ((,) ∘ 𝑔)) |
165 | 22 | cldss 22180 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → 𝑠 ⊆ ℝ) |
166 | | df-ss 3904 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑠 ⊆ ℝ ↔ (𝑠 ∩ ℝ) = 𝑠) |
167 | 165, 166 | sylib 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∩ ℝ) = 𝑠) |
168 | 167 | difeq1d 4056 |
. . . . . . . . . . . . . . 15
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → ((𝑠 ∩ ℝ) ∖ ∪ ran ((,) ∘ 𝑔)) = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) |
169 | 164, 168 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∩ (ℝ ∖ ∪ ran ((,) ∘ 𝑔))) = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) |
170 | 128, 156 | sstri 3930 |
. . . . . . . . . . . . . . . . 17
⊢ ran ((,)
∘ 𝑔) ⊆
(topGen‘ran (,)) |
171 | | uniopn 22046 |
. . . . . . . . . . . . . . . . 17
⊢
(((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑔) ⊆ (topGen‘ran
(,))) → ∪ ran ((,) ∘ 𝑔) ∈ (topGen‘ran
(,))) |
172 | 153, 170,
171 | mp2an 689 |
. . . . . . . . . . . . . . . 16
⊢ ∪ ran ((,) ∘ 𝑔) ∈ (topGen‘ran
(,)) |
173 | 22 | opncld 22184 |
. . . . . . . . . . . . . . . 16
⊢
(((topGen‘ran (,)) ∈ Top ∧ ∪
ran ((,) ∘ 𝑔) ∈
(topGen‘ran (,))) → (ℝ ∖ ∪
ran ((,) ∘ 𝑔)) ∈
(Clsd‘(topGen‘ran (,)))) |
174 | 153, 172,
173 | mp2an 689 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
∖ ∪ ran ((,) ∘ 𝑔)) ∈ (Clsd‘(topGen‘ran
(,))) |
175 | | incld 22194 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (ℝ ∖ ∪ ran ((,) ∘ 𝑔)) ∈ (Clsd‘(topGen‘ran
(,)))) → (𝑠 ∩
(ℝ ∖ ∪ ran ((,) ∘ 𝑔))) ∈
(Clsd‘(topGen‘ran (,)))) |
176 | 174, 175 | mpan2 688 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∩ (ℝ ∖ ∪ ran ((,) ∘ 𝑔))) ∈ (Clsd‘(topGen‘ran
(,)))) |
177 | 169, 176 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈
(Clsd‘(topGen‘ran (,)))) |
178 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓)) |
179 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (∪ ran
((,) ∘ 𝑓) ∖
𝐴) ⊆ ∪ ran ((,) ∘ 𝑔)) |
180 | 178, 179 | ssdif2d 4078 |
. . . . . . . . . . . . . 14
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
(∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) |
181 | | dfin4 4201 |
. . . . . . . . . . . . . . 15
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) = (∪ ran ((,)
∘ 𝑓) ∖ (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
182 | | inss2 4163 |
. . . . . . . . . . . . . . 15
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ 𝐴 |
183 | 181, 182 | eqsstrri 3956 |
. . . . . . . . . . . . . 14
⊢ (∪ ran ((,) ∘ 𝑓) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆ 𝐴 |
184 | 180, 183 | sstrdi 3933 |
. . . . . . . . . . . . 13
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴) |
185 | | sseq1 3946 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
(𝑏 ⊆ 𝐴 ↔ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴)) |
186 | 185 | anbi1d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
((𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) ↔ ((𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)))) |
187 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) = 𝑏 → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏)) |
188 | 187 | eqcoms 2746 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
(vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) |
189 | 188 | biantrud 532 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 ↔ ((𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)))) |
190 | 186, 189 | bitr4d 281 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) →
((𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) ↔ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ⊆
𝐴)) |
191 | 190 | rspcev 3561 |
. . . . . . . . . . . . 13
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
192 | 177, 184,
191 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ ((∪ ran
((,) ∘ 𝑓) ∖
𝐴) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓))) →
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏))) |
193 | 192 | an12s 646 |
. . . . . . . . . . 11
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓))) →
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏))) |
194 | 193 | adantrrr 722 |
. . . . . . . . . 10
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
195 | 194 | adantlr 712 |
. . . . . . . . 9
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
196 | 195 | adantll 711 |
. . . . . . . 8
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏))) |
197 | | difss 4066 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 |
198 | | ovolsscl 24650 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ∈ ℝ) |
199 | 197, 198 | mp3an1 1447 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℝ) |
200 | 199 | ad5antr 731 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℝ) |
201 | | simp-6r 785 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘𝐴) ∈ ℝ) |
202 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴)) → 𝑢 ∈ ℝ) |
203 | 202 | ad4antlr 730 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → 𝑢 ∈ ℝ) |
204 | | difdif2 4220 |
. . . . . . . . . . . 12
⊢ (𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) = ((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) |
205 | 204 | fveq2i 6777 |
. . . . . . . . . . 11
⊢
(vol*‘(𝐴
∖ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) = (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) |
206 | | difss 4066 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∖ 𝑠) ⊆ 𝐴 |
207 | | inss1 4162 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 |
208 | 206, 207 | unssi 4119 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ⊆ 𝐴 |
209 | | ovolsscl 24650 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘((𝐴 ∖
𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
210 | 208, 209 | mp3an1 1447 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
211 | 210 | ad5antr 731 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
212 | | ovolsscl 24650 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∖ 𝑠) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∖
𝑠)) ∈
ℝ) |
213 | 206, 212 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∖ 𝑠)) ∈ ℝ) |
214 | 213 | ad5antr 731 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) ∈ ℝ) |
215 | | ovolsscl 24650 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ∈ ℝ) |
216 | 207, 215 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ∈
ℝ) |
217 | 216 | ad5antr 731 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ∈
ℝ) |
218 | 214, 217 | readdcld 11004 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∖ 𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ∈
ℝ) |
219 | 3, 202, 98 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((vol*‘𝐴) −
𝑢) ∈
ℝ) |
220 | 219 | ad3antrrr 727 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘𝐴) − 𝑢) ∈ ℝ) |
221 | | ssdifss 4070 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝐴 ∖ 𝑠) ⊆ ℝ) |
222 | 221 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∖
𝑠) ⊆
ℝ) |
223 | | ssinss1 4171 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ ℝ → (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ ℝ) |
224 | 223 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (𝐴 ∩
∪ ran ((,) ∘ 𝑔)) ⊆ ℝ) |
225 | | ovolun 24663 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∖ 𝑠) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ 𝑠)) ∈ ℝ) ∧ ((𝐴 ∩ ∪ ran ((,)
∘ 𝑔)) ⊆ ℝ
∧ (vol*‘(𝐴 ∩
∪ ran ((,) ∘ 𝑔))) ∈ ℝ)) →
(vol*‘((𝐴 ∖
𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ≤
((vol*‘(𝐴 ∖
𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))))) |
226 | 222, 213,
224, 216, 225 | syl22anc 836 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ≤
((vol*‘(𝐴 ∖
𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))))) |
227 | 226 | ad5antr 731 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) ≤
((vol*‘(𝐴 ∖
𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))))) |
228 | 124 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ) |
229 | 228 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (((vol*‘𝐴) − 𝑢) / 2) ∈ ℝ) |
230 | 150 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
231 | | simprl 768 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → 𝑠 ⊆ ∪ ran
((,) ∘ 𝑓)) |
232 | 150 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) |
233 | | ovolsscl 24650 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ∪ ran ((,)
∘ 𝑓) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) →
(vol*‘𝑠) ∈
ℝ) |
234 | 64, 233 | mp3an2 1448 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘𝑠) ∈
ℝ) |
235 | 231, 232,
234 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘𝑠) ∈ ℝ) |
236 | 230, 235 | resubcld 11403 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠)) ∈ ℝ) |
237 | | ssdif 4074 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) → (𝐴 ∖ 𝑠) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝑠)) |
238 | | difss 4066 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) |
239 | 238, 64 | sstri 3930 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ℝ |
240 | | ovolss 24649 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∖ 𝑠) ⊆ (∪ ran
((,) ∘ 𝑓) ∖
𝑠) ∧ (∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ℝ) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
241 | 237, 239,
240 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
242 | 241 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1)) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
243 | 242 | ad3antlr 728 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) ≤ (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
244 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑏 = 𝑠 → (𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol)) |
245 | 244, 32 | vtoclga 3513 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → 𝑠 ∈ dom vol) |
246 | 245 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → 𝑠 ∈ dom vol) |
247 | | mblsplit 24696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 ∈ dom vol ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)))) |
248 | 64, 247 | mp3an2 1448 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑠 ∈ dom vol ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑓)) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)))) |
249 | 246, 232,
248 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)))) |
250 | 249 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) = (vol*‘∪ ran ((,) ∘ 𝑓))) |
251 | 230 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℂ) |
252 | | inss1 4162 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ ran ((,) ∘ 𝑓) ∩ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) |
253 | | ovolsscl 24650 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((∪ ran ((,) ∘ 𝑓) ∩ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
254 | 252, 64, 253 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
255 | 150, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
256 | 255 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℝ) |
257 | 256 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) ∈ ℂ) |
258 | | ovolsscl 24650 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝑠) ⊆ ∪ ran
((,) ∘ 𝑓) ∧ ∪ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℝ) |
259 | 238, 64, 258 | mp3an12 1450 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((vol*‘∪ ran ((,) ∘ 𝑓)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℝ) |
260 | 150, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℝ) |
261 | 260 | recnd 11003 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℂ) |
262 | 261 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ∈ ℂ) |
263 | 251, 257,
262 | subaddd 11350 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) ↔ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) + (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) = (vol*‘∪ ran ((,) ∘ 𝑓)))) |
264 | 250, 263 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠))) |
265 | | sseqin2 4149 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ↔ (∪ ran
((,) ∘ 𝑓) ∩ 𝑠) = 𝑠) |
266 | 265 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) → (∪ ran
((,) ∘ 𝑓) ∩ 𝑠) = 𝑠) |
267 | 266 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠)) = (vol*‘𝑠)) |
268 | 267 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
269 | 268 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
270 | 269 | ad2antll 726 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∩ 𝑠))) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
271 | 264, 270 | eqtr3d 2780 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝑠)) = ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
272 | 243, 271 | breqtrd 5100 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) ≤ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠))) |
273 | | simprrr 779 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)) |
274 | 230, 229,
235, 273 | ltsub23d 11580 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘∪ ran ((,) ∘ 𝑓)) − (vol*‘𝑠)) < (((vol*‘𝐴) − 𝑢) / 2)) |
275 | 214, 236,
229, 272, 274 | lelttrd 11133 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ 𝑠)) < (((vol*‘𝐴) − 𝑢) / 2)) |
276 | 216 | ad4antr 729 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ∈ ℝ) |
277 | 126, 132 | jctil 520 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ* ∧
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ)) |
278 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) |
279 | | ovolge0 24645 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∪ ran ((,) ∘ 𝑔) ⊆ ℝ → 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑔))) |
280 | 130, 279 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ≤
(vol*‘∪ ran ((,) ∘ 𝑔)) |
281 | 278, 280 | jctil 520 |
. . . . . . . . . . . . . . . . . 18
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) → (0 ≤ (vol*‘∪ ran ((,) ∘ 𝑔)) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
282 | | xrrege0 12908 |
. . . . . . . . . . . . . . . . . 18
⊢
((((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ*
∧ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)) ∈ ℝ) ∧ (0 ≤
(vol*‘∪ ran ((,) ∘ 𝑔)) ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) |
283 | 277, 281,
282 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) |
284 | | difss 4066 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆ ∪ ran ((,) ∘ 𝑔) |
285 | | ovolsscl 24650 |
. . . . . . . . . . . . . . . . . 18
⊢ (((∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆ ∪ ran ((,) ∘ 𝑔) ∧ ∪ ran ((,)
∘ 𝑔) ⊆ ℝ
∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) →
(vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℝ) |
286 | 284, 130,
285 | mp3an12 1450 |
. . . . . . . . . . . . . . . . 17
⊢
((vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ →
(vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℝ) |
287 | 283, 286 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℝ) |
288 | | ssun2 4107 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ran ((,) ∘ 𝑔) ∩ 𝐴) ⊆ ((∪ ran
((,) ∘ 𝑔) ∖
∪ ran ((,) ∘ 𝑓)) ∪ (∪ ran
((,) ∘ 𝑔) ∩ 𝐴)) |
289 | | incom 4135 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) = (∪ ran ((,)
∘ 𝑔) ∩ 𝐴) |
290 | | difdif2 4220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = ((∪ ran ((,) ∘ 𝑔) ∖ ∪ ran
((,) ∘ 𝑓)) ∪
(∪ ran ((,) ∘ 𝑔) ∩ 𝐴)) |
291 | 288, 289,
290 | 3sstr4i 3964 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
292 | 284, 130 | sstri 3930 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) ⊆
ℝ |
293 | 291, 292 | pm3.2i 471 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ⊆ ℝ) |
294 | | ovolss 24649 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∩ ∪ ran ((,) ∘ 𝑔)) ⊆ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∧ (∪ ran
((,) ∘ 𝑔) ∖
(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ⊆ ℝ) →
(vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ≤ (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
295 | 293, 294 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ≤ (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
296 | | opnmbl 24766 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (∪ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) → ∪ ran ((,) ∘ 𝑓) ∈ dom vol) |
297 | 159, 296 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ∪ ran ((,) ∘ 𝑓) ∈ dom vol |
298 | | difmbl 24707 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ ran ((,) ∘ 𝑓) ∈ dom vol ∧ 𝐴 ∈ dom vol) → (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol) |
299 | 297, 298 | mpan 687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐴 ∈ dom vol → (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol) |
300 | 299 | ad4antlr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol) |
301 | | mblsplit 24696 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol ∧ ∪ ran ((,) ∘ 𝑔) ⊆ ℝ ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑔)) = ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
302 | 130, 301 | mp3an2 1448 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ∈ dom vol ∧ (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℝ) → (vol*‘∪ ran ((,) ∘ 𝑔)) = ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
303 | 300, 283,
302 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) = ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
304 | | sseqin2 4149 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ↔
(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
305 | 304 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) →
(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)) = (∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) |
306 | 305 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) →
(vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) = (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) |
307 | 306 | oveq1d 7290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) →
((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
308 | 307 | ad2antrl 725 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘(∪ ran ((,) ∘ 𝑔) ∩ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))))) |
309 | 303, 308 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = (vol*‘∪ ran ((,) ∘ 𝑔))) |
310 | 283 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ∈ ℂ) |
311 | 97 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℝ) |
312 | 311 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) ∈ ℂ) |
313 | 287 | recnd 11003 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ∈
ℂ) |
314 | 310, 312,
313 | subaddd 11350 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ↔
((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) = (vol*‘∪ ran ((,) ∘ 𝑔)))) |
315 | 309, 314 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) = (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴)))) |
316 | | simprr 770 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) |
317 | 283, 311,
228 | lesubadd2d 11574 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) ≤ (((vol*‘𝐴) − 𝑢) / 2) ↔ (vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) |
318 | 316, 317 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ((vol*‘∪ ran ((,) ∘ 𝑔)) − (vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴))) ≤ (((vol*‘𝐴) − 𝑢) / 2)) |
319 | 315, 318 | eqbrtrrd 5098 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(∪ ran ((,) ∘ 𝑔) ∖ (∪ ran
((,) ∘ 𝑓) ∖
𝐴))) ≤
(((vol*‘𝐴) −
𝑢) / 2)) |
320 | 276, 287,
228, 295, 319 | letrd 11132 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (vol*‘(𝐴 ∩ ∪ ran ((,) ∘ 𝑔))) ≤ (((vol*‘𝐴) − 𝑢) / 2)) |
321 | 320 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔))) ≤
(((vol*‘𝐴) −
𝑢) / 2)) |
322 | 214, 217,
229, 229, 275, 321 | ltleaddd 11596 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∖ 𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) <
((((vol*‘𝐴) −
𝑢) / 2) +
(((vol*‘𝐴) −
𝑢) / 2))) |
323 | 98 | recnd 11003 |
. . . . . . . . . . . . . . . . 17
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → ((vol*‘𝐴) − 𝑢) ∈ ℂ) |
324 | 323 | 2halvesd 12219 |
. . . . . . . . . . . . . . . 16
⊢
(((vol*‘𝐴)
∈ ℝ ∧ 𝑢
∈ ℝ) → ((((vol*‘𝐴) − 𝑢) / 2) + (((vol*‘𝐴) − 𝑢) / 2)) = ((vol*‘𝐴) − 𝑢)) |
325 | 324 | adantll 711 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝑢 ∈
ℝ) → ((((vol*‘𝐴) − 𝑢) / 2) + (((vol*‘𝐴) − 𝑢) / 2)) = ((vol*‘𝐴) − 𝑢)) |
326 | 325 | ad2ant2r 744 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
((((vol*‘𝐴) −
𝑢) / 2) +
(((vol*‘𝐴) −
𝑢) / 2)) =
((vol*‘𝐴) −
𝑢)) |
327 | 326 | ad3antrrr 727 |
. . . . . . . . . . . . 13
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((((vol*‘𝐴) − 𝑢) / 2) + (((vol*‘𝐴) − 𝑢) / 2)) = ((vol*‘𝐴) − 𝑢)) |
328 | 322, 327 | breqtrd 5100 |
. . . . . . . . . . . 12
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∖ 𝑠)) + (vol*‘(𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) <
((vol*‘𝐴) −
𝑢)) |
329 | 211, 218,
220, 227, 328 | lelttrd 11133 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘((𝐴 ∖ 𝑠) ∪ (𝐴 ∩ ∪ ran ((,)
∘ 𝑔)))) <
((vol*‘𝐴) −
𝑢)) |
330 | 205, 329 | eqbrtrid 5109 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) <
((vol*‘𝐴) −
𝑢)) |
331 | 200, 201,
203, 330 | ltsub13d 11581 |
. . . . . . . . 9
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → 𝑢 < ((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
332 | | opnmbl 24766 |
. . . . . . . . . . . . . . . 16
⊢ (∪ ran ((,) ∘ 𝑔) ∈ (topGen‘ran (,)) → ∪ ran ((,) ∘ 𝑔) ∈ dom vol) |
333 | 172, 332 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ∪ ran ((,) ∘ 𝑔) ∈ dom vol |
334 | | difmbl 24707 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 ∈ dom vol ∧ ∪ ran ((,) ∘ 𝑔) ∈ dom vol) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈ dom
vol) |
335 | 245, 333,
334 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈ dom
vol) |
336 | | mblvol 24694 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol → (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol*‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) |
337 | 335, 336 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑠 ∈
(Clsd‘(topGen‘ran (,))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
338 | 337 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
339 | | sseqin2 4149 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) = (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) |
340 | 184, 339 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) = (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) |
341 | 340 | fveq2d 6778 |
. . . . . . . . . . . . . 14
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧ 𝑠 ⊆ ∪ ran ((,) ∘ 𝑓)) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
342 | 341 | adantrr 714 |
. . . . . . . . . . . . 13
⊢ (((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
343 | 342 | ad2ant2rl 746 |
. . . . . . . . . . . 12
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) =
(vol*‘(𝑠 ∖
∪ ran ((,) ∘ 𝑔)))) |
344 | 338, 343 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ ((((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) |
345 | 344 | adantll 711 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) |
346 | 335 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈
(Clsd‘(topGen‘ran (,))) ∧ (𝑠 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠))) → (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)) ∈ dom
vol) |
347 | | simp-4l 780 |
. . . . . . . . . . . 12
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈
ℝ)) |
348 | | mblsplit 24696 |
. . . . . . . . . . . . . 14
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘𝐴) =
((vol*‘(𝐴 ∩
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) + (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
349 | 348 | 3expb 1119 |
. . . . . . . . . . . . 13
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) →
(vol*‘𝐴) =
((vol*‘(𝐴 ∩
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) + (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
350 | 349 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (((𝑠 ∖ ∪ ran ((,) ∘ 𝑔)) ∈ dom vol ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) →
((vol*‘(𝐴 ∩
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) + (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘𝐴)) |
351 | 346, 347,
350 | syl2anr 597 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) +
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) = (vol*‘𝐴)) |
352 | | recn 10961 |
. . . . . . . . . . . . . 14
⊢
((vol*‘𝐴)
∈ ℝ → (vol*‘𝐴) ∈ ℂ) |
353 | 352 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘𝐴) ∈ ℂ) |
354 | 199 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℂ) |
355 | | inss1 4162 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 |
356 | | ovolsscl 24650 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) ⊆
𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ∈ ℝ) |
357 | 355, 356 | mp3an1 1447 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℝ) |
358 | 357 | recnd 11003 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) ∈
ℂ) |
359 | 353, 354,
358 | subadd2d 11351 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) → (((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ↔ ((vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) +
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) = (vol*‘𝐴))) |
360 | 359 | ad5antr 731 |
. . . . . . . . . . 11
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) ↔ ((vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) +
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) = (vol*‘𝐴))) |
361 | 351, 360 | mpbird 256 |
. . . . . . . . . 10
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ((vol*‘𝐴) − (vol*‘(𝐴 ∖ (𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) =
(vol*‘(𝐴 ∩ (𝑠 ∖ ∪ ran ((,) ∘ 𝑔))))) |
362 | 345, 361 | eqtr4d 2781 |
. . . . . . . . 9
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
((vol*‘𝐴) −
(vol*‘(𝐴 ∖
(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))))) |
363 | 331, 362 | breqtrrd 5102 |
. . . . . . . 8
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → 𝑢 < (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))) |
364 | | fvex 6787 |
. . . . . . . . 9
⊢
(vol‘(𝑠
∖ ∪ ran ((,) ∘ 𝑔))) ∈ V |
365 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → (𝑣 = (vol‘𝑏) ↔ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏))) |
366 | 365 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → ((𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏)))) |
367 | 366 | rexbidv 3226 |
. . . . . . . . . 10
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)))) |
368 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → (𝑢 < 𝑣 ↔ 𝑢 < (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))))) |
369 | 367, 368 | anbi12d 631 |
. . . . . . . . 9
⊢ (𝑣 = (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) → ((∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣) ↔ (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔))) = (vol‘𝑏)) ∧ 𝑢 < (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔)))))) |
370 | 364, 369 | spcev 3545 |
. . . . . . . 8
⊢
((∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ (vol‘(𝑠 ∖ ∪ ran
((,) ∘ 𝑔))) =
(vol‘𝑏)) ∧ 𝑢 < (vol‘(𝑠 ∖ ∪ ran ((,) ∘ 𝑔)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
371 | 196, 363,
370 | syl2anc 584 |
. . . . . . 7
⊢
(((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,)))
∧ (𝑠 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ ((vol*‘∪ ran ((,) ∘ 𝑓)) − (((vol*‘𝐴) − 𝑢) / 2)) < (vol*‘𝑠)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
372 | 163, 371 | rexlimddv 3220 |
. . . . . 6
⊢
((((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) ∧ ((∪ ran ((,) ∘ 𝑓) ∖ 𝐴) ⊆ ∪ ran
((,) ∘ 𝑔) ∧
(vol*‘∪ ran ((,) ∘ 𝑔)) ≤ ((vol*‘(∪ ran ((,) ∘ 𝑓) ∖ 𝐴)) + (((vol*‘𝐴) − 𝑢) / 2)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
373 | 142, 372 | exlimddv 1938 |
. . . . 5
⊢
(((((𝐴 ⊆
ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝐴 ∈ dom vol) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘𝐴))) ∧ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
(vol*‘∪ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐴) + 1))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
374 | 78, 373 | exlimddv 1938 |
. . . 4
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
∃𝑣(∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
375 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑦 = 𝑣 → (𝑦 = (vol‘𝑏) ↔ 𝑣 = (vol‘𝑏))) |
376 | 375 | anbi2d 629 |
. . . . . 6
⊢ (𝑦 = 𝑣 → ((𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)))) |
377 | 376 | rexbidv 3226 |
. . . . 5
⊢ (𝑦 = 𝑣 → (∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)))) |
378 | 377 | rexab 3631 |
. . . 4
⊢
(∃𝑣 ∈
{𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣 ↔ ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran
(,)))(𝑏 ⊆ 𝐴 ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣)) |
379 | 374, 378 | sylibr 233 |
. . 3
⊢ ((((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) ∧ (𝑢 ∈
ℝ ∧ 𝑢 <
(vol*‘𝐴))) →
∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣) |
380 | 2, 3, 42, 379 | eqsupd 9216 |
. 2
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘𝐴)) |
381 | 380 | eqcomd 2744 |
1
⊢ (((𝐴 ⊆ ℝ ∧
(vol*‘𝐴) ∈
ℝ) ∧ 𝐴 ∈ dom
vol) → (vol*‘𝐴)
= sup({𝑦 ∣
∃𝑏 ∈
(Clsd‘(topGen‘ran (,)))(𝑏 ⊆ 𝐴 ∧ 𝑦 = (vol‘𝑏))}, ℝ, < )) |