Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnel Structured version   Visualization version   GIF version

Theorem ssnel 42261
Description: If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
ssnel ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐴)

Proof of Theorem ssnel
StepHypRef Expression
1 ssel2 3895 . 2 ((𝐴𝐵𝐶𝐴) → 𝐶𝐵)
21stoic1a 1780 1 ((𝐴𝐵 ∧ ¬ 𝐶𝐵) → ¬ 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wcel 2110  wss 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883
This theorem is referenced by:  nelrnres  42398  supminfxr2  42684
  Copyright terms: Public domain W3C validator