Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxr2 Structured version   Visualization version   GIF version

Theorem supminfxr2 43016
Description: The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
supminfxr2.1 (𝜑𝐴 ⊆ ℝ*)
Assertion
Ref Expression
supminfxr2 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supminfxr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xnegmnf 12953 . . . . . 6 -𝑒-∞ = +∞
21eqcomi 2748 . . . . 5 +∞ = -𝑒-∞
32a1i 11 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ = -𝑒-∞)
4 supminfxr2.1 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
5 supxrpnf 13061 . . . . 5 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
64, 5sylan 580 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
7 ssrab2 4014 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ*
87a1i 11 . . . . . . 7 (+∞ ∈ 𝐴 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ*)
9 xnegeq 12950 . . . . . . . . . 10 (𝑦 = -∞ → -𝑒𝑦 = -𝑒-∞)
101a1i 11 . . . . . . . . . 10 (𝑦 = -∞ → -𝑒-∞ = +∞)
119, 10eqtrd 2779 . . . . . . . . 9 (𝑦 = -∞ → -𝑒𝑦 = +∞)
1211eleq1d 2824 . . . . . . . 8 (𝑦 = -∞ → (-𝑒𝑦𝐴 ↔ +∞ ∈ 𝐴))
13 mnfxr 11041 . . . . . . . . 9 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . 8 (+∞ ∈ 𝐴 → -∞ ∈ ℝ*)
15 id 22 . . . . . . . 8 (+∞ ∈ 𝐴 → +∞ ∈ 𝐴)
1612, 14, 15elrabd 3627 . . . . . . 7 (+∞ ∈ 𝐴 → -∞ ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
17 infxrmnf 13080 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ* ∧ -∞ ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}) → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
188, 16, 17syl2anc 584 . . . . . 6 (+∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
1918adantl 482 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
2019xnegeqd 42984 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒-∞)
213, 6, 203eqtr4d 2789 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
224ssdifssd 4078 . . . . . . 7 (𝜑 → (𝐴 ∖ {-∞}) ⊆ ℝ*)
2322adantr 481 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆ ℝ*)
24 difssd 4068 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → (𝐴 ∖ {-∞}) ⊆ 𝐴)
25 id 22 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ 𝐴)
26 ssnel 42595 . . . . . . . 8 (((𝐴 ∖ {-∞}) ⊆ 𝐴 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
2724, 25, 26syl2anc 584 . . . . . . 7 (¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
2827adantl 482 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
29 neldifsnd 4727 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ -∞ ∈ (𝐴 ∖ {-∞}))
3023, 28, 29xrssre 42894 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆ ℝ)
3130supminfxr 43011 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
32 supxrmnf2 42980 . . . . . . 7 (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
334, 32syl 17 . . . . . 6 (𝜑 → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
3433eqcomd 2745 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < ))
3534adantr 481 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < ))
36 rexr 11030 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
3736adantr 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ℝ*)
38 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ℝ)
3938rexnegd 42699 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑒𝑦 = -𝑦)
40 eldifi 4062 . . . . . . . . . . . . . . . . . 18 (-𝑦 ∈ (𝐴 ∖ {-∞}) → -𝑦𝐴)
4140adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑦𝐴)
4239, 41eqeltrd 2840 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑒𝑦𝐴)
4337, 42jca 512 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → (𝑦 ∈ ℝ* ∧ -𝑒𝑦𝐴))
44 rabid 3311 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ↔ (𝑦 ∈ ℝ* ∧ -𝑒𝑦𝐴))
4543, 44sylibr 233 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
46 renepnf 11032 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ≠ +∞)
47 elsni 4579 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {+∞} → 𝑦 = +∞)
4847necon3ai 2969 . . . . . . . . . . . . . . . 16 (𝑦 ≠ +∞ → ¬ 𝑦 ∈ {+∞})
4946, 48syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ¬ 𝑦 ∈ {+∞})
5038, 49syl 17 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → ¬ 𝑦 ∈ {+∞})
5145, 50eldifd 3899 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
5251ex 413 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
5352rgen 3075 . . . . . . . . . . 11 𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
5453a1i 11 . . . . . . . . . 10 (¬ +∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
55 nfrab1 3318 . . . . . . . . . . . 12 𝑦{𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}
56 nfcv 2908 . . . . . . . . . . . 12 𝑦{+∞}
5755, 56nfdif 4061 . . . . . . . . . . 11 𝑦({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})
5857rabssf 42675 . . . . . . . . . 10 ({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ↔ ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
5954, 58sylibr 233 . . . . . . . . 9 (¬ +∞ ∈ 𝐴 → {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
60 nfv 1918 . . . . . . . . . . . 12 𝑦 ¬ +∞ ∈ 𝐴
61 nfcv 2908 . . . . . . . . . . . 12 𝑦
62 eldifi 4062 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
637, 62sselid 3920 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ∈ ℝ*)
6463adantl 482 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ∈ ℝ*)
6544simprbi 497 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} → -𝑒𝑦𝐴)
6662, 65syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → -𝑒𝑦𝐴)
6712biimpac 479 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦𝐴𝑦 = -∞) → +∞ ∈ 𝐴)
6867adantll 711 . . . . . . . . . . . . . . . 16 (((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) ∧ 𝑦 = -∞) → +∞ ∈ 𝐴)
69 simpll 764 . . . . . . . . . . . . . . . 16 (((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) ∧ 𝑦 = -∞) → ¬ +∞ ∈ 𝐴)
7068, 69pm2.65da 814 . . . . . . . . . . . . . . 15 ((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) → ¬ 𝑦 = -∞)
7170neqned 2951 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) → 𝑦 ≠ -∞)
7266, 71sylan2 593 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ≠ -∞)
73 eldifsni 4724 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ≠ +∞)
7473adantl 482 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ≠ +∞)
7564, 72, 74xrred 42911 . . . . . . . . . . . 12 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ∈ ℝ)
7660, 57, 61, 75ssdf2 42697 . . . . . . . . . . 11 (¬ +∞ ∈ 𝐴 → ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ)
7775rexnegd 42699 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦 = -𝑦)
7866adantl 482 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦𝐴)
7963adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 ∈ ℝ*)
80 elsni 4579 . . . . . . . . . . . . . . . . . 18 (-𝑒𝑦 ∈ {-∞} → -𝑒𝑦 = -∞)
8180adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → -𝑒𝑦 = -∞)
82 xnegeq 12950 . . . . . . . . . . . . . . . . . . . 20 (-𝑒𝑦 = -∞ → -𝑒-𝑒𝑦 = -𝑒-∞)
831a1i 11 . . . . . . . . . . . . . . . . . . . 20 (-𝑒𝑦 = -∞ → -𝑒-∞ = +∞)
8482, 83eqtr2d 2780 . . . . . . . . . . . . . . . . . . 19 (-𝑒𝑦 = -∞ → +∞ = -𝑒-𝑒𝑦)
8584adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → +∞ = -𝑒-𝑒𝑦)
86 xnegneg 12957 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
8786adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → -𝑒-𝑒𝑦 = 𝑦)
8885, 87eqtr2d 2780 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → 𝑦 = +∞)
8979, 81, 88syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 = +∞)
9073neneqd 2949 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → ¬ 𝑦 = +∞)
9190adantr 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → ¬ 𝑦 = +∞)
9289, 91pm2.65da 814 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → ¬ -𝑒𝑦 ∈ {-∞})
9392adantl 482 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → ¬ -𝑒𝑦 ∈ {-∞})
9478, 93eldifd 3899 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦 ∈ (𝐴 ∖ {-∞}))
9577, 94eqeltrrd 2841 . . . . . . . . . . . 12 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑦 ∈ (𝐴 ∖ {-∞}))
9695ralrimiva 3104 . . . . . . . . . . 11 (¬ +∞ ∈ 𝐴 → ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))
9776, 96jca 512 . . . . . . . . . 10 (¬ +∞ ∈ 𝐴 → (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ ∧ ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})))
9857, 61ssrabf 42671 . . . . . . . . . 10 (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ↔ (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ ∧ ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})))
9997, 98sylibr 233 . . . . . . . . 9 (¬ +∞ ∈ 𝐴 → ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})})
10059, 99eqssd 3939 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} = ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
101100infeq1d 9245 . . . . . . 7 (¬ +∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ) = inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ))
102 infxrpnf2 43010 . . . . . . . . 9 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ* → inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
1037, 102ax-mp 5 . . . . . . . 8 inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < )
104103a1i 11 . . . . . . 7 (¬ +∞ ∈ 𝐴 → inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
105101, 104eqtr2d 2780 . . . . . 6 (¬ +∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
106105xnegeqd 42984 . . . . 5 (¬ +∞ ∈ 𝐴 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
107106adantl 482 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
10831, 35, 1073eqtr4d 2789 . . 3 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
10921, 108pm2.61dan 810 . 2 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
110 xnegeq 12950 . . . . . . 7 (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥)
111110eleq1d 2824 . . . . . 6 (𝑦 = 𝑥 → (-𝑒𝑦𝐴 ↔ -𝑒𝑥𝐴))
112111cbvrabv 3427 . . . . 5 {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} = {𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}
113112infeq1i 9246 . . . 4 inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < )
114113xnegeqi 42987 . . 3 -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < )
115114a1i 11 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
116109, 115eqtrd 2779 1 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2107  wne 2944  wral 3065  {crab 3069  cdif 3885  wss 3888  {csn 4562  supcsup 9208  infcinf 9209  cr 10879  +∞cpnf 11015  -∞cmnf 11016  *cxr 11017   < clt 11018  -cneg 11215  -𝑒cxne 12854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957  ax-pre-sup 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-isom 6446  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-sup 9210  df-inf 9211  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-xneg 12857
This theorem is referenced by:  supminfxrrnmpt  43018  liminfvalxr  43331
  Copyright terms: Public domain W3C validator