Step | Hyp | Ref
| Expression |
1 | | xnegmnf 12873 |
. . . . . 6
⊢
-𝑒-∞ = +∞ |
2 | 1 | eqcomi 2747 |
. . . . 5
⊢ +∞
= -𝑒-∞ |
3 | 2 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ =
-𝑒-∞) |
4 | | supminfxr2.1 |
. . . . 5
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
5 | | supxrpnf 12981 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ +∞ ∈ 𝐴)
→ sup(𝐴,
ℝ*, < ) = +∞) |
6 | 4, 5 | sylan 579 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) =
+∞) |
7 | | ssrab2 4009 |
. . . . . . . 8
⊢ {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆
ℝ* |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (+∞
∈ 𝐴 → {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆
ℝ*) |
9 | | xnegeq 12870 |
. . . . . . . . . 10
⊢ (𝑦 = -∞ →
-𝑒𝑦 =
-𝑒-∞) |
10 | 1 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑦 = -∞ →
-𝑒-∞ = +∞) |
11 | 9, 10 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑦 = -∞ →
-𝑒𝑦 =
+∞) |
12 | 11 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑦 = -∞ →
(-𝑒𝑦
∈ 𝐴 ↔ +∞
∈ 𝐴)) |
13 | | mnfxr 10963 |
. . . . . . . . 9
⊢ -∞
∈ ℝ* |
14 | 13 | a1i 11 |
. . . . . . . 8
⊢ (+∞
∈ 𝐴 → -∞
∈ ℝ*) |
15 | | id 22 |
. . . . . . . 8
⊢ (+∞
∈ 𝐴 → +∞
∈ 𝐴) |
16 | 12, 14, 15 | elrabd 3619 |
. . . . . . 7
⊢ (+∞
∈ 𝐴 → -∞
∈ {𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}) |
17 | | infxrmnf 13000 |
. . . . . . 7
⊢ (({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆ ℝ* ∧ -∞
∈ {𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}) → inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴},
ℝ*, < ) = -∞) |
18 | 8, 16, 17 | syl2anc 583 |
. . . . . 6
⊢ (+∞
∈ 𝐴 → inf({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-∞) |
19 | 18 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴},
ℝ*, < ) = -∞) |
20 | 19 | xnegeqd 42867 |
. . . 4
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒-∞) |
21 | 3, 6, 20 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) |
22 | 4 | ssdifssd 4073 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∖ {-∞}) ⊆
ℝ*) |
23 | 22 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆
ℝ*) |
24 | | difssd 4063 |
. . . . . . . 8
⊢ (¬
+∞ ∈ 𝐴 →
(𝐴 ∖ {-∞})
⊆ 𝐴) |
25 | | id 22 |
. . . . . . . 8
⊢ (¬
+∞ ∈ 𝐴 →
¬ +∞ ∈ 𝐴) |
26 | | ssnel 42477 |
. . . . . . . 8
⊢ (((𝐴 ∖ {-∞}) ⊆
𝐴 ∧ ¬ +∞
∈ 𝐴) → ¬
+∞ ∈ (𝐴 ∖
{-∞})) |
27 | 24, 25, 26 | syl2anc 583 |
. . . . . . 7
⊢ (¬
+∞ ∈ 𝐴 →
¬ +∞ ∈ (𝐴
∖ {-∞})) |
28 | 27 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈
(𝐴 ∖
{-∞})) |
29 | | neldifsnd 4723 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ -∞ ∈
(𝐴 ∖
{-∞})) |
30 | 23, 28, 29 | xrssre 42777 |
. . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆
ℝ) |
31 | 30 | supminfxr 42894 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*,
< ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*,
< )) |
32 | | supxrmnf2 42863 |
. . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ sup((𝐴 ∖
{-∞}), ℝ*, < ) = sup(𝐴, ℝ*, <
)) |
33 | 4, 32 | syl 17 |
. . . . . 6
⊢ (𝜑 → sup((𝐴 ∖ {-∞}), ℝ*,
< ) = sup(𝐴,
ℝ*, < )) |
34 | 33 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}),
ℝ*, < )) |
35 | 34 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}),
ℝ*, < )) |
36 | | rexr 10952 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) |
37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈
ℝ*) |
38 | | simpl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈
ℝ) |
39 | 38 | rexnegd 42581 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) →
-𝑒𝑦 =
-𝑦) |
40 | | eldifi 4057 |
. . . . . . . . . . . . . . . . . 18
⊢ (-𝑦 ∈ (𝐴 ∖ {-∞}) → -𝑦 ∈ 𝐴) |
41 | 40 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑦 ∈ 𝐴) |
42 | 39, 41 | eqeltrd 2839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) →
-𝑒𝑦
∈ 𝐴) |
43 | 37, 42 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → (𝑦 ∈ ℝ*
∧ -𝑒𝑦 ∈ 𝐴)) |
44 | | rabid 3304 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ↔ (𝑦 ∈ ℝ*
∧ -𝑒𝑦 ∈ 𝐴)) |
45 | 43, 44 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴}) |
46 | | renepnf 10954 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → 𝑦 ≠ +∞) |
47 | | elsni 4575 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {+∞} → 𝑦 = +∞) |
48 | 47 | necon3ai 2967 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ≠ +∞ → ¬
𝑦 ∈
{+∞}) |
49 | 46, 48 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → ¬
𝑦 ∈
{+∞}) |
50 | 38, 49 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → ¬ 𝑦 ∈
{+∞}) |
51 | 45, 50 | eldifd 3894 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞})) |
52 | 51 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}))) |
53 | 52 | rgen 3073 |
. . . . . . . . . . 11
⊢
∀𝑦 ∈
ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) →
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) |
54 | 53 | a1i 11 |
. . . . . . . . . 10
⊢ (¬
+∞ ∈ 𝐴 →
∀𝑦 ∈ ℝ
(-𝑦 ∈ (𝐴 ∖ {-∞}) →
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}))) |
55 | | nfrab1 3310 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦{𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} |
56 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦{+∞} |
57 | 55, 56 | nfdif 4056 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) |
58 | 57 | rabssf 42557 |
. . . . . . . . . 10
⊢ ({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ↔ ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}))) |
59 | 54, 58 | sylibr 233 |
. . . . . . . . 9
⊢ (¬
+∞ ∈ 𝐴 →
{𝑦 ∈ ℝ ∣
-𝑦 ∈ (𝐴 ∖ {-∞})} ⊆
({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) |
60 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 ¬
+∞ ∈ 𝐴 |
61 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦ℝ |
62 | | eldifi 4057 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → 𝑦 ∈
{𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}) |
63 | 7, 62 | sselid 3915 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → 𝑦 ∈
ℝ*) |
64 | 63 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ∈
ℝ*) |
65 | 44 | simprbi 496 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} →
-𝑒𝑦
∈ 𝐴) |
66 | 62, 65 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → -𝑒𝑦 ∈ 𝐴) |
67 | 12 | biimpac 478 |
. . . . . . . . . . . . . . . . 17
⊢
((-𝑒𝑦 ∈ 𝐴 ∧ 𝑦 = -∞) → +∞ ∈ 𝐴) |
68 | 67 | adantll 710 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) ∧ 𝑦 = -∞) → +∞
∈ 𝐴) |
69 | | simpll 763 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) ∧ 𝑦 = -∞) → ¬
+∞ ∈ 𝐴) |
70 | 68, 69 | pm2.65da 813 |
. . . . . . . . . . . . . . 15
⊢ ((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) → ¬
𝑦 =
-∞) |
71 | 70 | neqned 2949 |
. . . . . . . . . . . . . 14
⊢ ((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) → 𝑦 ≠ -∞) |
72 | 66, 71 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ≠ -∞) |
73 | | eldifsni 4720 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → 𝑦 ≠
+∞) |
74 | 73 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ≠ +∞) |
75 | 64, 72, 74 | xrred 42794 |
. . . . . . . . . . . 12
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ∈
ℝ) |
76 | 60, 57, 61, 75 | ssdf2 42579 |
. . . . . . . . . . 11
⊢ (¬
+∞ ∈ 𝐴 →
({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆
ℝ) |
77 | 75 | rexnegd 42581 |
. . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) →
-𝑒𝑦 =
-𝑦) |
78 | 66 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) →
-𝑒𝑦
∈ 𝐴) |
79 | 63 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 ∈ ℝ*) |
80 | | elsni 4575 |
. . . . . . . . . . . . . . . . . 18
⊢
(-𝑒𝑦 ∈ {-∞} →
-𝑒𝑦 =
-∞) |
81 | 80 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) →
-𝑒𝑦 =
-∞) |
82 | | xnegeq 12870 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(-𝑒𝑦 = -∞ →
-𝑒-𝑒𝑦 =
-𝑒-∞) |
83 | 1 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(-𝑒𝑦 = -∞ →
-𝑒-∞ = +∞) |
84 | 82, 83 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . 19
⊢
(-𝑒𝑦 = -∞ → +∞ =
-𝑒-𝑒𝑦) |
85 | 84 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = -∞) → +∞ =
-𝑒-𝑒𝑦) |
86 | | xnegneg 12877 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℝ*
→ -𝑒-𝑒𝑦 = 𝑦) |
87 | 86 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = -∞) →
-𝑒-𝑒𝑦 = 𝑦) |
88 | 85, 87 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = -∞) → 𝑦 = +∞) |
89 | 79, 81, 88 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 = +∞) |
90 | 73 | neneqd 2947 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → ¬ 𝑦
= +∞) |
91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → ¬ 𝑦 = +∞) |
92 | 89, 91 | pm2.65da 813 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → ¬ -𝑒𝑦 ∈ {-∞}) |
93 | 92 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → ¬
-𝑒𝑦
∈ {-∞}) |
94 | 78, 93 | eldifd 3894 |
. . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) →
-𝑒𝑦
∈ (𝐴 ∖
{-∞})) |
95 | 77, 94 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → -𝑦 ∈ (𝐴 ∖ {-∞})) |
96 | 95 | ralrimiva 3107 |
. . . . . . . . . . 11
⊢ (¬
+∞ ∈ 𝐴 →
∀𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})) |
97 | 76, 96 | jca 511 |
. . . . . . . . . 10
⊢ (¬
+∞ ∈ 𝐴 →
(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ ℝ ∧
∀𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))) |
98 | 57, 61 | ssrabf 42553 |
. . . . . . . . . 10
⊢ (({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ↔ (({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ ℝ ∧
∀𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))) |
99 | 97, 98 | sylibr 233 |
. . . . . . . . 9
⊢ (¬
+∞ ∈ 𝐴 →
({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}) |
100 | 59, 99 | eqssd 3934 |
. . . . . . . 8
⊢ (¬
+∞ ∈ 𝐴 →
{𝑦 ∈ ℝ ∣
-𝑦 ∈ (𝐴 ∖ {-∞})} = ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) |
101 | 100 | infeq1d 9166 |
. . . . . . 7
⊢ (¬
+∞ ∈ 𝐴 →
inf({𝑦 ∈ ℝ
∣ -𝑦 ∈ (𝐴 ∖ {-∞})},
ℝ*, < ) = inf(({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}), ℝ*, < )) |
102 | | infxrpnf2 42893 |
. . . . . . . . 9
⊢ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆ ℝ* →
inf(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}), ℝ*,
< ) = inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) |
103 | 7, 102 | ax-mp 5 |
. . . . . . . 8
⊢
inf(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}), ℝ*,
< ) = inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
) |
104 | 103 | a1i 11 |
. . . . . . 7
⊢ (¬
+∞ ∈ 𝐴 →
inf(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}), ℝ*,
< ) = inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) |
105 | 101, 104 | eqtr2d 2779 |
. . . . . 6
⊢ (¬
+∞ ∈ 𝐴 →
inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) = inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*,
< )) |
106 | 105 | xnegeqd 42867 |
. . . . 5
⊢ (¬
+∞ ∈ 𝐴 →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ ∣ -𝑦
∈ (𝐴 ∖
{-∞})}, ℝ*, < )) |
107 | 106 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ ∣ -𝑦
∈ (𝐴 ∖
{-∞})}, ℝ*, < )) |
108 | 31, 35, 107 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) |
109 | 21, 108 | pm2.61dan 809 |
. 2
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) |
110 | | xnegeq 12870 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥) |
111 | 110 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (-𝑒𝑦 ∈ 𝐴 ↔ -𝑒𝑥 ∈ 𝐴)) |
112 | 111 | cbvrabv 3416 |
. . . . 5
⊢ {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} = {𝑥 ∈ ℝ* ∣
-𝑒𝑥
∈ 𝐴} |
113 | 112 | infeq1i 9167 |
. . . 4
⊢
inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) = inf({𝑥 ∈ ℝ*
∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, <
) |
114 | 113 | xnegeqi 42870 |
. . 3
⊢
-𝑒inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴},
ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣
-𝑒𝑥
∈ 𝐴},
ℝ*, < ) |
115 | 114 | a1i 11 |
. 2
⊢ (𝜑 →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒inf({𝑥
∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, <
)) |
116 | 109, 115 | eqtrd 2778 |
1
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑥
∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, <
)) |