Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxr2 Structured version   Visualization version   GIF version

Theorem supminfxr2 45506
Description: The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
supminfxr2.1 (𝜑𝐴 ⊆ ℝ*)
Assertion
Ref Expression
supminfxr2 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supminfxr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xnegmnf 13106 . . . . . 6 -𝑒-∞ = +∞
21eqcomi 2740 . . . . 5 +∞ = -𝑒-∞
32a1i 11 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ = -𝑒-∞)
4 supminfxr2.1 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
5 supxrpnf 13214 . . . . 5 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
64, 5sylan 580 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
7 ssrab2 4030 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ*
87a1i 11 . . . . . . 7 (+∞ ∈ 𝐴 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ*)
9 xnegeq 13103 . . . . . . . . . 10 (𝑦 = -∞ → -𝑒𝑦 = -𝑒-∞)
101a1i 11 . . . . . . . . . 10 (𝑦 = -∞ → -𝑒-∞ = +∞)
119, 10eqtrd 2766 . . . . . . . . 9 (𝑦 = -∞ → -𝑒𝑦 = +∞)
1211eleq1d 2816 . . . . . . . 8 (𝑦 = -∞ → (-𝑒𝑦𝐴 ↔ +∞ ∈ 𝐴))
13 mnfxr 11166 . . . . . . . . 9 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . 8 (+∞ ∈ 𝐴 → -∞ ∈ ℝ*)
15 id 22 . . . . . . . 8 (+∞ ∈ 𝐴 → +∞ ∈ 𝐴)
1612, 14, 15elrabd 3649 . . . . . . 7 (+∞ ∈ 𝐴 → -∞ ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
17 infxrmnf 13234 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ* ∧ -∞ ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}) → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
188, 16, 17syl2anc 584 . . . . . 6 (+∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
1918adantl 481 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
2019xnegeqd 45474 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒-∞)
213, 6, 203eqtr4d 2776 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
224ssdifssd 4097 . . . . . . 7 (𝜑 → (𝐴 ∖ {-∞}) ⊆ ℝ*)
2322adantr 480 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆ ℝ*)
24 difssd 4087 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → (𝐴 ∖ {-∞}) ⊆ 𝐴)
25 id 22 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ 𝐴)
26 ssnel 45079 . . . . . . . 8 (((𝐴 ∖ {-∞}) ⊆ 𝐴 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
2724, 25, 26syl2anc 584 . . . . . . 7 (¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
2827adantl 481 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
29 neldifsnd 4745 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ -∞ ∈ (𝐴 ∖ {-∞}))
3023, 28, 29xrssre 45386 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆ ℝ)
3130supminfxr 45501 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
32 supxrmnf2 45470 . . . . . . 7 (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
334, 32syl 17 . . . . . 6 (𝜑 → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
3433eqcomd 2737 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < ))
3534adantr 480 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < ))
36 rexr 11155 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
3736adantr 480 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ℝ*)
38 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ℝ)
3938rexnegd 45179 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑒𝑦 = -𝑦)
40 eldifi 4081 . . . . . . . . . . . . . . . . . 18 (-𝑦 ∈ (𝐴 ∖ {-∞}) → -𝑦𝐴)
4140adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑦𝐴)
4239, 41eqeltrd 2831 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑒𝑦𝐴)
4337, 42jca 511 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → (𝑦 ∈ ℝ* ∧ -𝑒𝑦𝐴))
44 rabid 3416 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ↔ (𝑦 ∈ ℝ* ∧ -𝑒𝑦𝐴))
4543, 44sylibr 234 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
46 renepnf 11157 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ≠ +∞)
47 elsni 4593 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {+∞} → 𝑦 = +∞)
4847necon3ai 2953 . . . . . . . . . . . . . . . 16 (𝑦 ≠ +∞ → ¬ 𝑦 ∈ {+∞})
4946, 48syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ¬ 𝑦 ∈ {+∞})
5038, 49syl 17 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → ¬ 𝑦 ∈ {+∞})
5145, 50eldifd 3913 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
5251ex 412 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
5352rgen 3049 . . . . . . . . . . 11 𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
5453a1i 11 . . . . . . . . . 10 (¬ +∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
55 nfrab1 3415 . . . . . . . . . . . 12 𝑦{𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}
56 nfcv 2894 . . . . . . . . . . . 12 𝑦{+∞}
5755, 56nfdif 4079 . . . . . . . . . . 11 𝑦({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})
5857rabssf 45155 . . . . . . . . . 10 ({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ↔ ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
5954, 58sylibr 234 . . . . . . . . 9 (¬ +∞ ∈ 𝐴 → {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
60 nfv 1915 . . . . . . . . . . . 12 𝑦 ¬ +∞ ∈ 𝐴
61 nfcv 2894 . . . . . . . . . . . 12 𝑦
62 eldifi 4081 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
637, 62sselid 3932 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ∈ ℝ*)
6463adantl 481 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ∈ ℝ*)
6544simprbi 496 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} → -𝑒𝑦𝐴)
6662, 65syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → -𝑒𝑦𝐴)
6712biimpac 478 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦𝐴𝑦 = -∞) → +∞ ∈ 𝐴)
6867adantll 714 . . . . . . . . . . . . . . . 16 (((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) ∧ 𝑦 = -∞) → +∞ ∈ 𝐴)
69 simpll 766 . . . . . . . . . . . . . . . 16 (((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) ∧ 𝑦 = -∞) → ¬ +∞ ∈ 𝐴)
7068, 69pm2.65da 816 . . . . . . . . . . . . . . 15 ((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) → ¬ 𝑦 = -∞)
7170neqned 2935 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) → 𝑦 ≠ -∞)
7266, 71sylan2 593 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ≠ -∞)
73 eldifsni 4742 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ≠ +∞)
7473adantl 481 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ≠ +∞)
7564, 72, 74xrred 45402 . . . . . . . . . . . 12 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ∈ ℝ)
7660, 57, 61, 75ssdf2 45177 . . . . . . . . . . 11 (¬ +∞ ∈ 𝐴 → ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ)
7775rexnegd 45179 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦 = -𝑦)
7866adantl 481 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦𝐴)
7963adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 ∈ ℝ*)
80 elsni 4593 . . . . . . . . . . . . . . . . . 18 (-𝑒𝑦 ∈ {-∞} → -𝑒𝑦 = -∞)
8180adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → -𝑒𝑦 = -∞)
82 xnegeq 13103 . . . . . . . . . . . . . . . . . . . 20 (-𝑒𝑦 = -∞ → -𝑒-𝑒𝑦 = -𝑒-∞)
831a1i 11 . . . . . . . . . . . . . . . . . . . 20 (-𝑒𝑦 = -∞ → -𝑒-∞ = +∞)
8482, 83eqtr2d 2767 . . . . . . . . . . . . . . . . . . 19 (-𝑒𝑦 = -∞ → +∞ = -𝑒-𝑒𝑦)
8584adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → +∞ = -𝑒-𝑒𝑦)
86 xnegneg 13110 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
8786adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → -𝑒-𝑒𝑦 = 𝑦)
8885, 87eqtr2d 2767 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → 𝑦 = +∞)
8979, 81, 88syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 = +∞)
9073neneqd 2933 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → ¬ 𝑦 = +∞)
9190adantr 480 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → ¬ 𝑦 = +∞)
9289, 91pm2.65da 816 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → ¬ -𝑒𝑦 ∈ {-∞})
9392adantl 481 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → ¬ -𝑒𝑦 ∈ {-∞})
9478, 93eldifd 3913 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦 ∈ (𝐴 ∖ {-∞}))
9577, 94eqeltrrd 2832 . . . . . . . . . . . 12 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑦 ∈ (𝐴 ∖ {-∞}))
9695ralrimiva 3124 . . . . . . . . . . 11 (¬ +∞ ∈ 𝐴 → ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))
9776, 96jca 511 . . . . . . . . . 10 (¬ +∞ ∈ 𝐴 → (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ ∧ ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})))
9857, 61ssrabf 45150 . . . . . . . . . 10 (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ↔ (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ ∧ ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})))
9997, 98sylibr 234 . . . . . . . . 9 (¬ +∞ ∈ 𝐴 → ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})})
10059, 99eqssd 3952 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} = ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
101100infeq1d 9362 . . . . . . 7 (¬ +∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ) = inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ))
102 infxrpnf2 45500 . . . . . . . . 9 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ* → inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
1037, 102ax-mp 5 . . . . . . . 8 inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < )
104103a1i 11 . . . . . . 7 (¬ +∞ ∈ 𝐴 → inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
105101, 104eqtr2d 2767 . . . . . 6 (¬ +∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
106105xnegeqd 45474 . . . . 5 (¬ +∞ ∈ 𝐴 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
107106adantl 481 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
10831, 35, 1073eqtr4d 2776 . . 3 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
10921, 108pm2.61dan 812 . 2 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
110 xnegeq 13103 . . . . . . 7 (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥)
111110eleq1d 2816 . . . . . 6 (𝑦 = 𝑥 → (-𝑒𝑦𝐴 ↔ -𝑒𝑥𝐴))
112111cbvrabv 3405 . . . . 5 {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} = {𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}
113112infeq1i 9363 . . . 4 inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < )
114113xnegeqi 45477 . . 3 -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < )
115114a1i 11 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
116109, 115eqtrd 2766 1 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3899  wss 3902  {csn 4576  supcsup 9324  infcinf 9325  cr 11002  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143  -cneg 11342  -𝑒cxne 13005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-xneg 13008
This theorem is referenced by:  supminfxrrnmpt  45508  liminfvalxr  45820
  Copyright terms: Public domain W3C validator