| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xnegmnf 13253 | . . . . . 6
⊢
-𝑒-∞ = +∞ | 
| 2 | 1 | eqcomi 2745 | . . . . 5
⊢ +∞
= -𝑒-∞ | 
| 3 | 2 | a1i 11 | . . . 4
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ =
-𝑒-∞) | 
| 4 |  | supminfxr2.1 | . . . . 5
⊢ (𝜑 → 𝐴 ⊆
ℝ*) | 
| 5 |  | supxrpnf 13361 | . . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ +∞ ∈ 𝐴)
→ sup(𝐴,
ℝ*, < ) = +∞) | 
| 6 | 4, 5 | sylan 580 | . . . 4
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) =
+∞) | 
| 7 |  | ssrab2 4079 | . . . . . . . 8
⊢ {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆
ℝ* | 
| 8 | 7 | a1i 11 | . . . . . . 7
⊢ (+∞
∈ 𝐴 → {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆
ℝ*) | 
| 9 |  | xnegeq 13250 | . . . . . . . . . 10
⊢ (𝑦 = -∞ →
-𝑒𝑦 =
-𝑒-∞) | 
| 10 | 1 | a1i 11 | . . . . . . . . . 10
⊢ (𝑦 = -∞ →
-𝑒-∞ = +∞) | 
| 11 | 9, 10 | eqtrd 2776 | . . . . . . . . 9
⊢ (𝑦 = -∞ →
-𝑒𝑦 =
+∞) | 
| 12 | 11 | eleq1d 2825 | . . . . . . . 8
⊢ (𝑦 = -∞ →
(-𝑒𝑦
∈ 𝐴 ↔ +∞
∈ 𝐴)) | 
| 13 |  | mnfxr 11319 | . . . . . . . . 9
⊢ -∞
∈ ℝ* | 
| 14 | 13 | a1i 11 | . . . . . . . 8
⊢ (+∞
∈ 𝐴 → -∞
∈ ℝ*) | 
| 15 |  | id 22 | . . . . . . . 8
⊢ (+∞
∈ 𝐴 → +∞
∈ 𝐴) | 
| 16 | 12, 14, 15 | elrabd 3693 | . . . . . . 7
⊢ (+∞
∈ 𝐴 → -∞
∈ {𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}) | 
| 17 |  | infxrmnf 13380 | . . . . . . 7
⊢ (({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆ ℝ* ∧ -∞
∈ {𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}) → inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴},
ℝ*, < ) = -∞) | 
| 18 | 8, 16, 17 | syl2anc 584 | . . . . . 6
⊢ (+∞
∈ 𝐴 → inf({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-∞) | 
| 19 | 18 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴},
ℝ*, < ) = -∞) | 
| 20 | 19 | xnegeqd 45453 | . . . 4
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒-∞) | 
| 21 | 3, 6, 20 | 3eqtr4d 2786 | . . 3
⊢ ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) | 
| 22 | 4 | ssdifssd 4146 | . . . . . . 7
⊢ (𝜑 → (𝐴 ∖ {-∞}) ⊆
ℝ*) | 
| 23 | 22 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆
ℝ*) | 
| 24 |  | difssd 4136 | . . . . . . . 8
⊢ (¬
+∞ ∈ 𝐴 →
(𝐴 ∖ {-∞})
⊆ 𝐴) | 
| 25 |  | id 22 | . . . . . . . 8
⊢ (¬
+∞ ∈ 𝐴 →
¬ +∞ ∈ 𝐴) | 
| 26 |  | ssnel 45053 | . . . . . . . 8
⊢ (((𝐴 ∖ {-∞}) ⊆
𝐴 ∧ ¬ +∞
∈ 𝐴) → ¬
+∞ ∈ (𝐴 ∖
{-∞})) | 
| 27 | 24, 25, 26 | syl2anc 584 | . . . . . . 7
⊢ (¬
+∞ ∈ 𝐴 →
¬ +∞ ∈ (𝐴
∖ {-∞})) | 
| 28 | 27 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈
(𝐴 ∖
{-∞})) | 
| 29 |  | neldifsnd 4792 | . . . . . 6
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ -∞ ∈
(𝐴 ∖
{-∞})) | 
| 30 | 23, 28, 29 | xrssre 45364 | . . . . 5
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆
ℝ) | 
| 31 | 30 | supminfxr 45480 | . . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*,
< ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*,
< )) | 
| 32 |  | supxrmnf2 45449 | . . . . . . 7
⊢ (𝐴 ⊆ ℝ*
→ sup((𝐴 ∖
{-∞}), ℝ*, < ) = sup(𝐴, ℝ*, <
)) | 
| 33 | 4, 32 | syl 17 | . . . . . 6
⊢ (𝜑 → sup((𝐴 ∖ {-∞}), ℝ*,
< ) = sup(𝐴,
ℝ*, < )) | 
| 34 | 33 | eqcomd 2742 | . . . . 5
⊢ (𝜑 → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}),
ℝ*, < )) | 
| 35 | 34 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}),
ℝ*, < )) | 
| 36 |  | rexr 11308 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℝ*) | 
| 37 | 36 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈
ℝ*) | 
| 38 |  | simpl 482 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈
ℝ) | 
| 39 | 38 | rexnegd 45153 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) →
-𝑒𝑦 =
-𝑦) | 
| 40 |  | eldifi 4130 | . . . . . . . . . . . . . . . . . 18
⊢ (-𝑦 ∈ (𝐴 ∖ {-∞}) → -𝑦 ∈ 𝐴) | 
| 41 | 40 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑦 ∈ 𝐴) | 
| 42 | 39, 41 | eqeltrd 2840 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) →
-𝑒𝑦
∈ 𝐴) | 
| 43 | 37, 42 | jca 511 | . . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → (𝑦 ∈ ℝ*
∧ -𝑒𝑦 ∈ 𝐴)) | 
| 44 |  | rabid 3457 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ↔ (𝑦 ∈ ℝ*
∧ -𝑒𝑦 ∈ 𝐴)) | 
| 45 | 43, 44 | sylibr 234 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴}) | 
| 46 |  | renepnf 11310 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ → 𝑦 ≠ +∞) | 
| 47 |  | elsni 4642 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {+∞} → 𝑦 = +∞) | 
| 48 | 47 | necon3ai 2964 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 ≠ +∞ → ¬
𝑦 ∈
{+∞}) | 
| 49 | 46, 48 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ → ¬
𝑦 ∈
{+∞}) | 
| 50 | 38, 49 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → ¬ 𝑦 ∈
{+∞}) | 
| 51 | 45, 50 | eldifd 3961 | . . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞})) | 
| 52 | 51 | ex 412 | . . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}))) | 
| 53 | 52 | rgen 3062 | . . . . . . . . . . 11
⊢
∀𝑦 ∈
ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) →
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) | 
| 54 | 53 | a1i 11 | . . . . . . . . . 10
⊢ (¬
+∞ ∈ 𝐴 →
∀𝑦 ∈ ℝ
(-𝑦 ∈ (𝐴 ∖ {-∞}) →
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}))) | 
| 55 |  | nfrab1 3456 | . . . . . . . . . . . 12
⊢
Ⅎ𝑦{𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} | 
| 56 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑦{+∞} | 
| 57 | 55, 56 | nfdif 4128 | . . . . . . . . . . 11
⊢
Ⅎ𝑦({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) | 
| 58 | 57 | rabssf 45129 | . . . . . . . . . 10
⊢ ({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ↔ ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}))) | 
| 59 | 54, 58 | sylibr 234 | . . . . . . . . 9
⊢ (¬
+∞ ∈ 𝐴 →
{𝑦 ∈ ℝ ∣
-𝑦 ∈ (𝐴 ∖ {-∞})} ⊆
({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) | 
| 60 |  | nfv 1913 | . . . . . . . . . . . 12
⊢
Ⅎ𝑦 ¬
+∞ ∈ 𝐴 | 
| 61 |  | nfcv 2904 | . . . . . . . . . . . 12
⊢
Ⅎ𝑦ℝ | 
| 62 |  | eldifi 4130 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → 𝑦 ∈
{𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}) | 
| 63 | 7, 62 | sselid 3980 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → 𝑦 ∈
ℝ*) | 
| 64 | 63 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ∈
ℝ*) | 
| 65 | 44 | simprbi 496 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} →
-𝑒𝑦
∈ 𝐴) | 
| 66 | 62, 65 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → -𝑒𝑦 ∈ 𝐴) | 
| 67 | 12 | biimpac 478 | . . . . . . . . . . . . . . . . 17
⊢
((-𝑒𝑦 ∈ 𝐴 ∧ 𝑦 = -∞) → +∞ ∈ 𝐴) | 
| 68 | 67 | adantll 714 | . . . . . . . . . . . . . . . 16
⊢ (((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) ∧ 𝑦 = -∞) → +∞
∈ 𝐴) | 
| 69 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) ∧ 𝑦 = -∞) → ¬
+∞ ∈ 𝐴) | 
| 70 | 68, 69 | pm2.65da 816 | . . . . . . . . . . . . . . 15
⊢ ((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) → ¬
𝑦 =
-∞) | 
| 71 | 70 | neqned 2946 | . . . . . . . . . . . . . 14
⊢ ((¬
+∞ ∈ 𝐴 ∧
-𝑒𝑦
∈ 𝐴) → 𝑦 ≠ -∞) | 
| 72 | 66, 71 | sylan2 593 | . . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ≠ -∞) | 
| 73 |  | eldifsni 4789 | . . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → 𝑦 ≠
+∞) | 
| 74 | 73 | adantl 481 | . . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ≠ +∞) | 
| 75 | 64, 72, 74 | xrred 45381 | . . . . . . . . . . . 12
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → 𝑦 ∈
ℝ) | 
| 76 | 60, 57, 61, 75 | ssdf2 45151 | . . . . . . . . . . 11
⊢ (¬
+∞ ∈ 𝐴 →
({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆
ℝ) | 
| 77 | 75 | rexnegd 45153 | . . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) →
-𝑒𝑦 =
-𝑦) | 
| 78 | 66 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) →
-𝑒𝑦
∈ 𝐴) | 
| 79 | 63 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 ∈ ℝ*) | 
| 80 |  | elsni 4642 | . . . . . . . . . . . . . . . . . 18
⊢
(-𝑒𝑦 ∈ {-∞} →
-𝑒𝑦 =
-∞) | 
| 81 | 80 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) →
-𝑒𝑦 =
-∞) | 
| 82 |  | xnegeq 13250 | . . . . . . . . . . . . . . . . . . . 20
⊢
(-𝑒𝑦 = -∞ →
-𝑒-𝑒𝑦 =
-𝑒-∞) | 
| 83 | 1 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢
(-𝑒𝑦 = -∞ →
-𝑒-∞ = +∞) | 
| 84 | 82, 83 | eqtr2d 2777 | . . . . . . . . . . . . . . . . . . 19
⊢
(-𝑒𝑦 = -∞ → +∞ =
-𝑒-𝑒𝑦) | 
| 85 | 84 | adantl 481 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = -∞) → +∞ =
-𝑒-𝑒𝑦) | 
| 86 |  | xnegneg 13257 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ ℝ*
→ -𝑒-𝑒𝑦 = 𝑦) | 
| 87 | 86 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = -∞) →
-𝑒-𝑒𝑦 = 𝑦) | 
| 88 | 85, 87 | eqtr2d 2777 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = -∞) → 𝑦 = +∞) | 
| 89 | 79, 81, 88 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 = +∞) | 
| 90 | 73 | neneqd 2944 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → ¬ 𝑦
= +∞) | 
| 91 | 90 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → ¬ 𝑦 = +∞) | 
| 92 | 89, 91 | pm2.65da 816 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}) → ¬ -𝑒𝑦 ∈ {-∞}) | 
| 93 | 92 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → ¬
-𝑒𝑦
∈ {-∞}) | 
| 94 | 78, 93 | eldifd 3961 | . . . . . . . . . . . . 13
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) →
-𝑒𝑦
∈ (𝐴 ∖
{-∞})) | 
| 95 | 77, 94 | eqeltrrd 2841 | . . . . . . . . . . . 12
⊢ ((¬
+∞ ∈ 𝐴 ∧
𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) → -𝑦 ∈ (𝐴 ∖ {-∞})) | 
| 96 | 95 | ralrimiva 3145 | . . . . . . . . . . 11
⊢ (¬
+∞ ∈ 𝐴 →
∀𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})) | 
| 97 | 76, 96 | jca 511 | . . . . . . . . . 10
⊢ (¬
+∞ ∈ 𝐴 →
(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ ℝ ∧
∀𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))) | 
| 98 | 57, 61 | ssrabf 45124 | . . . . . . . . . 10
⊢ (({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ↔ (({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ ℝ ∧
∀𝑦 ∈ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))) | 
| 99 | 97, 98 | sylibr 234 | . . . . . . . . 9
⊢ (¬
+∞ ∈ 𝐴 →
({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}) | 
| 100 | 59, 99 | eqssd 4000 | . . . . . . . 8
⊢ (¬
+∞ ∈ 𝐴 →
{𝑦 ∈ ℝ ∣
-𝑦 ∈ (𝐴 ∖ {-∞})} = ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞})) | 
| 101 | 100 | infeq1d 9518 | . . . . . . 7
⊢ (¬
+∞ ∈ 𝐴 →
inf({𝑦 ∈ ℝ
∣ -𝑦 ∈ (𝐴 ∖ {-∞})},
ℝ*, < ) = inf(({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴} ∖
{+∞}), ℝ*, < )) | 
| 102 |  | infxrpnf2 45479 | . . . . . . . . 9
⊢ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} ⊆ ℝ* →
inf(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}), ℝ*,
< ) = inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) | 
| 103 | 7, 102 | ax-mp 5 | . . . . . . . 8
⊢
inf(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}), ℝ*,
< ) = inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
) | 
| 104 | 103 | a1i 11 | . . . . . . 7
⊢ (¬
+∞ ∈ 𝐴 →
inf(({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴} ∖ {+∞}), ℝ*,
< ) = inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) | 
| 105 | 101, 104 | eqtr2d 2777 | . . . . . 6
⊢ (¬
+∞ ∈ 𝐴 →
inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) = inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*,
< )) | 
| 106 | 105 | xnegeqd 45453 | . . . . 5
⊢ (¬
+∞ ∈ 𝐴 →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ ∣ -𝑦
∈ (𝐴 ∖
{-∞})}, ℝ*, < )) | 
| 107 | 106 | adantl 481 | . . . 4
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ ∣ -𝑦
∈ (𝐴 ∖
{-∞})}, ℝ*, < )) | 
| 108 | 31, 35, 107 | 3eqtr4d 2786 | . . 3
⊢ ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) | 
| 109 | 21, 108 | pm2.61dan 812 | . 2
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, <
)) | 
| 110 |  | xnegeq 13250 | . . . . . . 7
⊢ (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥) | 
| 111 | 110 | eleq1d 2825 | . . . . . 6
⊢ (𝑦 = 𝑥 → (-𝑒𝑦 ∈ 𝐴 ↔ -𝑒𝑥 ∈ 𝐴)) | 
| 112 | 111 | cbvrabv 3446 | . . . . 5
⊢ {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ 𝐴} = {𝑥 ∈ ℝ* ∣
-𝑒𝑥
∈ 𝐴} | 
| 113 | 112 | infeq1i 9519 | . . . 4
⊢
inf({𝑦 ∈
ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) = inf({𝑥 ∈ ℝ*
∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, <
) | 
| 114 | 113 | xnegeqi 45456 | . . 3
⊢
-𝑒inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ 𝐴},
ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣
-𝑒𝑥
∈ 𝐴},
ℝ*, < ) | 
| 115 | 114 | a1i 11 | . 2
⊢ (𝜑 →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ 𝐴}, ℝ*, < ) =
-𝑒inf({𝑥
∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, <
)) | 
| 116 | 109, 115 | eqtrd 2776 | 1
⊢ (𝜑 → sup(𝐴, ℝ*, < ) =
-𝑒inf({𝑥
∈ ℝ* ∣ -𝑒𝑥 ∈ 𝐴}, ℝ*, <
)) |