Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxr2 Structured version   Visualization version   GIF version

Theorem supminfxr2 41287
Description: The extended real suprema of a set of extended reals is the extended real negative of the extended real infima of that set's image under extended real negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
supminfxr2.1 (𝜑𝐴 ⊆ ℝ*)
Assertion
Ref Expression
supminfxr2 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem supminfxr2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 xnegmnf 12453 . . . . . 6 -𝑒-∞ = +∞
21eqcomi 2804 . . . . 5 +∞ = -𝑒-∞
32a1i 11 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → +∞ = -𝑒-∞)
4 supminfxr2.1 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
5 supxrpnf 12561 . . . . 5 ((𝐴 ⊆ ℝ* ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
64, 5sylan 580 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = +∞)
7 ssrab2 3977 . . . . . . . 8 {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ*
87a1i 11 . . . . . . 7 (+∞ ∈ 𝐴 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ*)
9 xnegeq 12450 . . . . . . . . . 10 (𝑦 = -∞ → -𝑒𝑦 = -𝑒-∞)
101a1i 11 . . . . . . . . . 10 (𝑦 = -∞ → -𝑒-∞ = +∞)
119, 10eqtrd 2831 . . . . . . . . 9 (𝑦 = -∞ → -𝑒𝑦 = +∞)
1211eleq1d 2867 . . . . . . . 8 (𝑦 = -∞ → (-𝑒𝑦𝐴 ↔ +∞ ∈ 𝐴))
13 mnfxr 10545 . . . . . . . . 9 -∞ ∈ ℝ*
1413a1i 11 . . . . . . . 8 (+∞ ∈ 𝐴 → -∞ ∈ ℝ*)
15 id 22 . . . . . . . 8 (+∞ ∈ 𝐴 → +∞ ∈ 𝐴)
1612, 14, 15elrabd 3620 . . . . . . 7 (+∞ ∈ 𝐴 → -∞ ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
17 infxrmnf 12580 . . . . . . 7 (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ* ∧ -∞ ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}) → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
188, 16, 17syl2anc 584 . . . . . 6 (+∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
1918adantl 482 . . . . 5 ((𝜑 ∧ +∞ ∈ 𝐴) → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -∞)
2019xnegeqd 41253 . . . 4 ((𝜑 ∧ +∞ ∈ 𝐴) → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒-∞)
213, 6, 203eqtr4d 2841 . . 3 ((𝜑 ∧ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
224ssdifssd 4040 . . . . . . 7 (𝜑 → (𝐴 ∖ {-∞}) ⊆ ℝ*)
2322adantr 481 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆ ℝ*)
24 difssd 4030 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → (𝐴 ∖ {-∞}) ⊆ 𝐴)
25 id 22 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ 𝐴)
26 ssnel 40841 . . . . . . . 8 (((𝐴 ∖ {-∞}) ⊆ 𝐴 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
2724, 25, 26syl2anc 584 . . . . . . 7 (¬ +∞ ∈ 𝐴 → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
2827adantl 482 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ +∞ ∈ (𝐴 ∖ {-∞}))
29 neldifsnd 4633 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → ¬ -∞ ∈ (𝐴 ∖ {-∞}))
3023, 28, 29xrssre 41157 . . . . 5 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → (𝐴 ∖ {-∞}) ⊆ ℝ)
3130supminfxr 41282 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup((𝐴 ∖ {-∞}), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
32 supxrmnf2 41249 . . . . . . 7 (𝐴 ⊆ ℝ* → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
334, 32syl 17 . . . . . 6 (𝜑 → sup((𝐴 ∖ {-∞}), ℝ*, < ) = sup(𝐴, ℝ*, < ))
3433eqcomd 2801 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < ))
3534adantr 481 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = sup((𝐴 ∖ {-∞}), ℝ*, < ))
36 rexr 10533 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
3736adantr 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ℝ*)
38 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ℝ)
3938rexnegd 40951 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑒𝑦 = -𝑦)
40 eldifi 4024 . . . . . . . . . . . . . . . . . 18 (-𝑦 ∈ (𝐴 ∖ {-∞}) → -𝑦𝐴)
4140adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑦𝐴)
4239, 41eqeltrd 2883 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → -𝑒𝑦𝐴)
4337, 42jca 512 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → (𝑦 ∈ ℝ* ∧ -𝑒𝑦𝐴))
44 rabid 3337 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ↔ (𝑦 ∈ ℝ* ∧ -𝑒𝑦𝐴))
4543, 44sylibr 235 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
46 renepnf 10535 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → 𝑦 ≠ +∞)
47 elsni 4489 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {+∞} → 𝑦 = +∞)
4847necon3ai 3009 . . . . . . . . . . . . . . . 16 (𝑦 ≠ +∞ → ¬ 𝑦 ∈ {+∞})
4946, 48syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → ¬ 𝑦 ∈ {+∞})
5038, 49syl 17 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → ¬ 𝑦 ∈ {+∞})
5145, 50eldifd 3870 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ -𝑦 ∈ (𝐴 ∖ {-∞})) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
5251ex 413 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
5352rgen 3115 . . . . . . . . . . 11 𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
5453a1i 11 . . . . . . . . . 10 (¬ +∞ ∈ 𝐴 → ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
55 nfrab1 3344 . . . . . . . . . . . 12 𝑦{𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}
56 nfcv 2949 . . . . . . . . . . . 12 𝑦{+∞}
5755, 56nfdif 4023 . . . . . . . . . . 11 𝑦({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})
5857rabssf 40925 . . . . . . . . . 10 ({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ↔ ∀𝑦 ∈ ℝ (-𝑦 ∈ (𝐴 ∖ {-∞}) → 𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})))
5954, 58sylibr 235 . . . . . . . . 9 (¬ +∞ ∈ 𝐴 → {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ⊆ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
60 nfv 1892 . . . . . . . . . . . 12 𝑦 ¬ +∞ ∈ 𝐴
61 nfcv 2949 . . . . . . . . . . . 12 𝑦
62 eldifi 4024 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴})
637, 62sseldi 3887 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ∈ ℝ*)
6463adantl 482 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ∈ ℝ*)
6544simprbi 497 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} → -𝑒𝑦𝐴)
6662, 65syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → -𝑒𝑦𝐴)
6712biimpac 479 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦𝐴𝑦 = -∞) → +∞ ∈ 𝐴)
6867adantll 710 . . . . . . . . . . . . . . . 16 (((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) ∧ 𝑦 = -∞) → +∞ ∈ 𝐴)
69 simpll 763 . . . . . . . . . . . . . . . 16 (((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) ∧ 𝑦 = -∞) → ¬ +∞ ∈ 𝐴)
7068, 69pm2.65da 813 . . . . . . . . . . . . . . 15 ((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) → ¬ 𝑦 = -∞)
7170neqned 2991 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴 ∧ -𝑒𝑦𝐴) → 𝑦 ≠ -∞)
7266, 71sylan2 592 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ≠ -∞)
73 eldifsni 4629 . . . . . . . . . . . . . 14 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → 𝑦 ≠ +∞)
7473adantl 482 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ≠ +∞)
7564, 72, 74xrred 41174 . . . . . . . . . . . 12 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → 𝑦 ∈ ℝ)
7660, 57, 61, 75ssdf2 40949 . . . . . . . . . . 11 (¬ +∞ ∈ 𝐴 → ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ)
7775rexnegd 40951 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦 = -𝑦)
7866adantl 482 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦𝐴)
7963adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 ∈ ℝ*)
80 elsni 4489 . . . . . . . . . . . . . . . . . 18 (-𝑒𝑦 ∈ {-∞} → -𝑒𝑦 = -∞)
8180adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → -𝑒𝑦 = -∞)
82 xnegeq 12450 . . . . . . . . . . . . . . . . . . . 20 (-𝑒𝑦 = -∞ → -𝑒-𝑒𝑦 = -𝑒-∞)
831a1i 11 . . . . . . . . . . . . . . . . . . . 20 (-𝑒𝑦 = -∞ → -𝑒-∞ = +∞)
8482, 83eqtr2d 2832 . . . . . . . . . . . . . . . . . . 19 (-𝑒𝑦 = -∞ → +∞ = -𝑒-𝑒𝑦)
8584adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → +∞ = -𝑒-𝑒𝑦)
86 xnegneg 12457 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
8786adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → -𝑒-𝑒𝑦 = 𝑦)
8885, 87eqtr2d 2832 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = -∞) → 𝑦 = +∞)
8979, 81, 88syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → 𝑦 = +∞)
9073neneqd 2989 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → ¬ 𝑦 = +∞)
9190adantr 481 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ∧ -𝑒𝑦 ∈ {-∞}) → ¬ 𝑦 = +∞)
9289, 91pm2.65da 813 . . . . . . . . . . . . . . 15 (𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) → ¬ -𝑒𝑦 ∈ {-∞})
9392adantl 482 . . . . . . . . . . . . . 14 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → ¬ -𝑒𝑦 ∈ {-∞})
9478, 93eldifd 3870 . . . . . . . . . . . . 13 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑒𝑦 ∈ (𝐴 ∖ {-∞}))
9577, 94eqeltrrd 2884 . . . . . . . . . . . 12 ((¬ +∞ ∈ 𝐴𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})) → -𝑦 ∈ (𝐴 ∖ {-∞}))
9695ralrimiva 3149 . . . . . . . . . . 11 (¬ +∞ ∈ 𝐴 → ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞}))
9776, 96jca 512 . . . . . . . . . 10 (¬ +∞ ∈ 𝐴 → (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ ∧ ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})))
9857, 61ssrabf 40921 . . . . . . . . . 10 (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} ↔ (({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ ℝ ∧ ∀𝑦 ∈ ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞})-𝑦 ∈ (𝐴 ∖ {-∞})))
9997, 98sylibr 235 . . . . . . . . 9 (¬ +∞ ∈ 𝐴 → ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}) ⊆ {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})})
10059, 99eqssd 3906 . . . . . . . 8 (¬ +∞ ∈ 𝐴 → {𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})} = ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}))
101100infeq1d 8787 . . . . . . 7 (¬ +∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ) = inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ))
102 infxrpnf2 41281 . . . . . . . . 9 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ⊆ ℝ* → inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
1037, 102ax-mp 5 . . . . . . . 8 inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < )
104103a1i 11 . . . . . . 7 (¬ +∞ ∈ 𝐴 → inf(({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} ∖ {+∞}), ℝ*, < ) = inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
105101, 104eqtr2d 2832 . . . . . 6 (¬ +∞ ∈ 𝐴 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
106105xnegeqd 41253 . . . . 5 (¬ +∞ ∈ 𝐴 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
107106adantl 482 . . . 4 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ ∣ -𝑦 ∈ (𝐴 ∖ {-∞})}, ℝ*, < ))
10831, 35, 1073eqtr4d 2841 . . 3 ((𝜑 ∧ ¬ +∞ ∈ 𝐴) → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
10921, 108pm2.61dan 809 . 2 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ))
110 xnegeq 12450 . . . . . . 7 (𝑦 = 𝑥 → -𝑒𝑦 = -𝑒𝑥)
111110eleq1d 2867 . . . . . 6 (𝑦 = 𝑥 → (-𝑒𝑦𝐴 ↔ -𝑒𝑥𝐴))
112111cbvrabv 3434 . . . . 5 {𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴} = {𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}
113112infeq1i 8788 . . . 4 inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < )
114113xnegeqi 41256 . . 3 -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < )
115114a1i 11 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦𝐴}, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
116109, 115eqtrd 2831 1 (𝜑 → sup(𝐴, ℝ*, < ) = -𝑒inf({𝑥 ∈ ℝ* ∣ -𝑒𝑥𝐴}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  wral 3105  {crab 3109  cdif 3856  wss 3859  {csn 4472  supcsup 8750  infcinf 8751  cr 10382  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   < clt 10521  -cneg 10718  -𝑒cxne 12354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-xneg 12357
This theorem is referenced by:  supminfxrrnmpt  41289  liminfvalxr  41606
  Copyright terms: Public domain W3C validator