![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelrnres | Structured version Visualization version GIF version |
Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
nelrnres | ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnresss 6046 | . 2 ⊢ ran (𝐵 ↾ 𝐶) ⊆ ran 𝐵 | |
2 | ssnel 44943 | . 2 ⊢ ((ran (𝐵 ↾ 𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ⊆ wss 3976 ran crn 5701 ↾ cres 5702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 |
This theorem is referenced by: sge0sup 46312 sge0less 46313 sge0resplit 46327 |
Copyright terms: Public domain | W3C validator |