| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelrnres | Structured version Visualization version GIF version | ||
| Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| nelrnres | ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnresss 5968 | . 2 ⊢ ran (𝐵 ↾ 𝐶) ⊆ ran 𝐵 | |
| 2 | ssnel 45031 | . 2 ⊢ ((ran (𝐵 ↾ 𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ⊆ wss 3903 ran crn 5620 ↾ cres 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 |
| This theorem is referenced by: sge0sup 46382 sge0less 46383 sge0resplit 46397 |
| Copyright terms: Public domain | W3C validator |