Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnres Structured version   Visualization version   GIF version

Theorem nelrnres 45175
Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
nelrnres 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))

Proof of Theorem nelrnres
StepHypRef Expression
1 rnresss 5968 . 2 ran (𝐵𝐶) ⊆ ran 𝐵
2 ssnel 45031 . 2 ((ran (𝐵𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵𝐶))
31, 2mpan 690 1 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3903  ran crn 5620  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by:  sge0sup  46382  sge0less  46383  sge0resplit  46397
  Copyright terms: Public domain W3C validator