Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnres Structured version   Visualization version   GIF version

Theorem nelrnres 45197
Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
nelrnres 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))

Proof of Theorem nelrnres
StepHypRef Expression
1 rnresss 6034 . 2 ran (𝐵𝐶) ⊆ ran 𝐵
2 ssnel 45053 . 2 ((ran (𝐵𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵𝐶))
31, 2mpan 690 1 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wss 3950  ran crn 5685  cres 5686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-cnv 5692  df-dm 5694  df-rn 5695  df-res 5696
This theorem is referenced by:  sge0sup  46411  sge0less  46412  sge0resplit  46426
  Copyright terms: Public domain W3C validator