![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelrnres | Structured version Visualization version GIF version |
Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
nelrnres | ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnresss 6026 | . 2 ⊢ ran (𝐵 ↾ 𝐶) ⊆ ran 𝐵 | |
2 | ssnel 44454 | . 2 ⊢ ((ran (𝐵 ↾ 𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | mpan 688 | 1 ⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ⊆ wss 3949 ran crn 5683 ↾ cres 5684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 |
This theorem is referenced by: sge0sup 45826 sge0less 45827 sge0resplit 45841 |
Copyright terms: Public domain | W3C validator |