Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnres Structured version   Visualization version   GIF version

Theorem nelrnres 44608
Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
nelrnres 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))

Proof of Theorem nelrnres
StepHypRef Expression
1 rnresss 6026 . 2 ran (𝐵𝐶) ⊆ ran 𝐵
2 ssnel 44454 . 2 ((ran (𝐵𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵𝐶))
31, 2mpan 688 1 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2098  wss 3949  ran crn 5683  cres 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694
This theorem is referenced by:  sge0sup  45826  sge0less  45827  sge0resplit  45841
  Copyright terms: Public domain W3C validator