Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnres Structured version   Visualization version   GIF version

Theorem nelrnres 45181
Description: If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
nelrnres 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))

Proof of Theorem nelrnres
StepHypRef Expression
1 rnresss 5988 . 2 ran (𝐵𝐶) ⊆ ran 𝐵
2 ssnel 45037 . 2 ((ran (𝐵𝐶) ⊆ ran 𝐵 ∧ ¬ 𝐴 ∈ ran 𝐵) → ¬ 𝐴 ∈ ran (𝐵𝐶))
31, 2mpan 690 1 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wss 3914  ran crn 5639  cres 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650
This theorem is referenced by:  sge0sup  46389  sge0less  46390  sge0resplit  46404
  Copyright terms: Public domain W3C validator