| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic1a | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 1 (part
a).
The first thema of the four Stoic logic themata, in its basic form, was: "When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/ We will represent thema 1 as two very similar rules stoic1a 1772 and stoic1b 1773 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.) |
| Ref | Expression |
|---|---|
| stoic1.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Ref | Expression |
|---|---|
| stoic1a | ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic1.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1b 1773 posn 5717 frsn 5719 relimasn 6045 nssdmovg 7551 iblss 25739 midexlem 28672 colhp 28750 clwwlknon0 30072 xaddeq0 32726 xrge0npcan 33004 elrgspnsubrunlem2 33215 constrinvcl 33756 madjusmdetlem2 33811 onvf1od 35087 unccur 37590 lindsenlbs 37602 itg2addnclem2 37659 dvasin 37691 ssnel 45030 icccncfext 45878 dirkercncflem1 46094 fourierdlem81 46178 fourierdlem97 46194 prsal 46309 volico2 46632 |
| Copyright terms: Public domain | W3C validator |