![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic1a | Structured version Visualization version GIF version |
Description: Stoic logic Thema 1 (part
a).
The first thema of the four Stoic logic themata, in its basic form, was: "When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/ We will represent thema 1 as two very similar rules stoic1a 1770 and stoic1b 1771 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.) |
Ref | Expression |
---|---|
stoic1.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Ref | Expression |
---|---|
stoic1a | ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic1.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | 2 | con3dimp 408 | 1 ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: stoic1b 1771 posn 5785 frsn 5787 relimasn 6114 nssdmovg 7632 iblss 25860 midexlem 28718 colhp 28796 clwwlknon0 30125 xaddeq0 32760 xrge0npcan 33006 unccur 37563 lindsenlbs 37575 itg2addnclem2 37632 dvasin 37664 ssnel 44943 icccncfext 45808 dirkercncflem1 46024 fourierdlem81 46108 fourierdlem97 46124 prsal 46239 volico2 46562 |
Copyright terms: Public domain | W3C validator |