MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stoic1a Structured version   Visualization version   GIF version

Theorem stoic1a 1779
Description: Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1779 and stoic1b 1780 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

Hypothesis
Ref Expression
stoic1.1 ((𝜑𝜓) → 𝜃)
Assertion
Ref Expression
stoic1a ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓)

Proof of Theorem stoic1a
StepHypRef Expression
1 stoic1.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 413 . 2 (𝜑 → (𝜓𝜃))
32con3dimp 409 1 ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  stoic1b  1780  posn  5672  frsn  5674  relimasn  5990  nssdmovg  7446  iblss  24965  midexlem  27049  colhp  27127  clwwlknon0  28451  xaddeq0  31070  xrge0npcan  31297  unccur  35754  lindsenlbs  35766  itg2addnclem2  35823  dvasin  35855  ssnel  42556  icccncfext  43397  dirkercncflem1  43613  fourierdlem81  43697  fourierdlem97  43713  prsal  43828  volico2  44148
  Copyright terms: Public domain W3C validator