| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic1a | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 1 (part
a).
The first thema of the four Stoic logic themata, in its basic form, was: "When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/ We will represent thema 1 as two very similar rules stoic1a 1773 and stoic1b 1774 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.) |
| Ref | Expression |
|---|---|
| stoic1.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Ref | Expression |
|---|---|
| stoic1a | ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic1.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1b 1774 posn 5700 frsn 5702 relimasn 6033 nssdmovg 7528 iblss 25733 midexlem 28670 colhp 28748 clwwlknon0 30073 xaddeq0 32736 xrge0npcan 33001 elrgspnsubrunlem2 33215 constrinvcl 33786 madjusmdetlem2 33841 onvf1od 35151 unccur 37642 lindsenlbs 37654 itg2addnclem2 37711 dvasin 37743 ssnel 45139 icccncfext 45984 dirkercncflem1 46200 fourierdlem81 46284 fourierdlem97 46300 prsal 46415 volico2 46738 |
| Copyright terms: Public domain | W3C validator |