| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic1a | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 1 (part
a).
The first thema of the four Stoic logic themata, in its basic form, was: "When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/ We will represent thema 1 as two very similar rules stoic1a 1772 and stoic1b 1773 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.) |
| Ref | Expression |
|---|---|
| stoic1.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Ref | Expression |
|---|---|
| stoic1a | ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic1.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: stoic1b 1773 posn 5727 frsn 5729 relimasn 6059 nssdmovg 7574 iblss 25713 midexlem 28626 colhp 28704 clwwlknon0 30029 xaddeq0 32683 xrge0npcan 32968 elrgspnsubrunlem2 33206 constrinvcl 33770 madjusmdetlem2 33825 onvf1od 35101 unccur 37604 lindsenlbs 37616 itg2addnclem2 37673 dvasin 37705 ssnel 45044 icccncfext 45892 dirkercncflem1 46108 fourierdlem81 46192 fourierdlem97 46208 prsal 46323 volico2 46646 |
| Copyright terms: Public domain | W3C validator |