MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stoic1a Structured version   Visualization version   GIF version

Theorem stoic1a 1776
Description: Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1776 and stoic1b 1777 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

Hypothesis
Ref Expression
stoic1.1 ((𝜑𝜓) → 𝜃)
Assertion
Ref Expression
stoic1a ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓)

Proof of Theorem stoic1a
StepHypRef Expression
1 stoic1.1 . . 3 ((𝜑𝜓) → 𝜃)
21ex 412 . 2 (𝜑 → (𝜓𝜃))
32con3dimp 408 1 ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  stoic1b  1777  posn  5663  frsn  5665  relimasn  5981  nssdmovg  7432  iblss  24874  midexlem  26957  colhp  27035  clwwlknon0  28358  xaddeq0  30978  xrge0npcan  31205  unccur  35687  lindsenlbs  35699  itg2addnclem2  35756  dvasin  35788  ssnel  42477  icccncfext  43318  dirkercncflem1  43534  fourierdlem81  43618  fourierdlem97  43634  prsal  43749  volico2  44069
  Copyright terms: Public domain W3C validator