Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpALT2 Structured version   Visualization version   GIF version

Theorem sspwimpALT2 42548
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimpALT2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpALT2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . 4 𝑥 ∈ V
2 elpwi 4542 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
3 id 22 . . . . 5 (𝐴𝐵𝐴𝐵)
42, 3sylan9ssr 3935 . . . 4 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥𝐵)
5 elpwg 4536 . . . . 5 (𝑥 ∈ V → (𝑥 ∈ 𝒫 𝐵𝑥𝐵))
65biimpar 478 . . . 4 ((𝑥 ∈ V ∧ 𝑥𝐵) → 𝑥 ∈ 𝒫 𝐵)
71, 4, 6sylancr 587 . . 3 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵)
87ex 413 . 2 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
98ssrdv 3927 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3432  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator