| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version | ||
| Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
| 3 | 1, 2 | sylan9ss 3970 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3941 |
| This theorem is referenced by: intssuni2 4946 marypha1 9440 cardinfima 10103 cfflb 10265 ssfin4 10316 acsfn 17656 mrelatlub 18557 efgval 19683 islbs3 21101 kgentopon 23461 txlly 23559 sigaclci 34071 bnj1014 34913 topjoin 36304 filnetlem3 36319 poimirlem16 37581 mblfinlem3 37604 sspwimpALT 44876 sspwimpALT2 44879 setrecsres 49286 |
| Copyright terms: Public domain | W3C validator |