MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 4010
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 4009 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 458 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3980
This theorem is referenced by:  intssuni2  4978  marypha1  9472  cardinfima  10135  cfflb  10297  ssfin4  10348  acsfn  17704  mrelatlub  18620  efgval  19750  islbs3  21175  kgentopon  23562  txlly  23660  sigaclci  34113  bnj1014  34954  topjoin  36348  filnetlem3  36363  poimirlem16  37623  mblfinlem3  37646  sspwimpALT  44923  sspwimpALT2  44926  setrecsres  48933
  Copyright terms: Public domain W3C validator