Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 3905 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
4 | 3 | ancoms 462 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ⊆ wss 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 |
This theorem is referenced by: intssuni2 4863 marypha1 8931 cardinfima 9557 cfflb 9719 ssfin4 9770 acsfn 16988 mrelatlub 17862 efgval 18910 islbs3 19995 kgentopon 22238 txlly 22336 sigaclci 31619 bnj1014 32461 topjoin 34103 filnetlem3 34118 poimirlem16 35353 mblfinlem3 35376 sspwimpALT 42004 sspwimpALT2 42007 setrecsres 45622 |
Copyright terms: Public domain | W3C validator |