![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 3987 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 |
This theorem is referenced by: intssuni2 4967 marypha1 9425 cardinfima 10088 cfflb 10250 ssfin4 10301 acsfn 17602 mrelatlub 18517 efgval 19627 islbs3 20996 kgentopon 23364 txlly 23462 sigaclci 33619 bnj1014 34461 topjoin 35740 filnetlem3 35755 poimirlem16 36994 mblfinlem3 37017 sspwimpALT 44175 sspwimpALT2 44178 setrecsres 47935 |
Copyright terms: Public domain | W3C validator |