| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version | ||
| Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
| 3 | 1, 2 | sylan9ss 3948 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3919 |
| This theorem is referenced by: intssuni2 4923 marypha1 9318 cardinfima 9988 cfflb 10150 ssfin4 10201 acsfn 17565 mrelatlub 18468 efgval 19630 islbs3 21093 kgentopon 23454 txlly 23552 sigaclci 34143 bnj1014 34971 topjoin 36405 filnetlem3 36420 poimirlem16 37682 mblfinlem3 37705 sspwimpALT 44963 sspwimpALT2 44966 setrecsres 49740 |
| Copyright terms: Public domain | W3C validator |