| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version | ||
| Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
| 3 | 1, 2 | sylan9ss 3972 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3943 |
| This theorem is referenced by: intssuni2 4949 marypha1 9446 cardinfima 10111 cfflb 10273 ssfin4 10324 acsfn 17671 mrelatlub 18572 efgval 19698 islbs3 21116 kgentopon 23476 txlly 23574 sigaclci 34163 bnj1014 34992 topjoin 36383 filnetlem3 36398 poimirlem16 37660 mblfinlem3 37683 sspwimpALT 44949 sspwimpALT2 44952 setrecsres 49566 |
| Copyright terms: Public domain | W3C validator |