![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 4022 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3993 |
This theorem is referenced by: intssuni2 4997 marypha1 9503 cardinfima 10166 cfflb 10328 ssfin4 10379 acsfn 17717 mrelatlub 18632 efgval 19759 islbs3 21180 kgentopon 23567 txlly 23665 sigaclci 34096 bnj1014 34937 topjoin 36331 filnetlem3 36346 poimirlem16 37596 mblfinlem3 37619 sspwimpALT 44896 sspwimpALT2 44899 setrecsres 48794 |
Copyright terms: Public domain | W3C validator |