MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 3996
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 3995 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 459 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  intssuni2  4977  marypha1  9428  cardinfima  10091  cfflb  10253  ssfin4  10304  acsfn  17602  mrelatlub  18514  efgval  19584  islbs3  20767  kgentopon  23041  txlly  23139  sigaclci  33125  bnj1014  33967  topjoin  35245  filnetlem3  35260  poimirlem16  36499  mblfinlem3  36522  sspwimpALT  43676  sspwimpALT2  43679  setrecsres  47737
  Copyright terms: Public domain W3C validator