MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 3935
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 3934 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 459 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  intssuni2  4904  marypha1  9193  cardinfima  9853  cfflb  10015  ssfin4  10066  acsfn  17368  mrelatlub  18280  efgval  19323  islbs3  20417  kgentopon  22689  txlly  22787  sigaclci  32100  bnj1014  32941  topjoin  34554  filnetlem3  34569  poimirlem16  35793  mblfinlem3  35816  sspwimpALT  42545  sspwimpALT2  42548  setrecsres  46407
  Copyright terms: Public domain W3C validator