MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 3961
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 3960 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 458 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3931
This theorem is referenced by:  intssuni2  4937  marypha1  9385  cardinfima  10050  cfflb  10212  ssfin4  10263  acsfn  17620  mrelatlub  18521  efgval  19647  islbs3  21065  kgentopon  23425  txlly  23523  sigaclci  34122  bnj1014  34951  topjoin  36353  filnetlem3  36368  poimirlem16  37630  mblfinlem3  37653  sspwimpALT  44914  sspwimpALT2  44917  setrecsres  49691
  Copyright terms: Public domain W3C validator