MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 3971
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 3970 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 458 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3941
This theorem is referenced by:  intssuni2  4946  marypha1  9440  cardinfima  10103  cfflb  10265  ssfin4  10316  acsfn  17656  mrelatlub  18557  efgval  19683  islbs3  21101  kgentopon  23461  txlly  23559  sigaclci  34071  bnj1014  34913  topjoin  36304  filnetlem3  36319  poimirlem16  37581  mblfinlem3  37604  sspwimpALT  44876  sspwimpALT2  44879  setrecsres  49286
  Copyright terms: Public domain W3C validator