| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version | ||
| Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
| Ref | Expression |
|---|---|
| sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
| 3 | 1, 2 | sylan9ss 3951 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| 4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3922 |
| This theorem is referenced by: intssuni2 4926 marypha1 9343 cardinfima 10010 cfflb 10172 ssfin4 10223 acsfn 17583 mrelatlub 18486 efgval 19614 islbs3 21080 kgentopon 23441 txlly 23539 sigaclci 34098 bnj1014 34927 topjoin 36338 filnetlem3 36353 poimirlem16 37615 mblfinlem3 37638 sspwimpALT 44898 sspwimpALT2 44901 setrecsres 49688 |
| Copyright terms: Public domain | W3C validator |