MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 3973
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 3972 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 458 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3943
This theorem is referenced by:  intssuni2  4949  marypha1  9446  cardinfima  10111  cfflb  10273  ssfin4  10324  acsfn  17671  mrelatlub  18572  efgval  19698  islbs3  21116  kgentopon  23476  txlly  23574  sigaclci  34163  bnj1014  34992  topjoin  36383  filnetlem3  36398  poimirlem16  37660  mblfinlem3  37683  sspwimpALT  44949  sspwimpALT2  44952  setrecsres  49566
  Copyright terms: Public domain W3C validator