MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ssr Structured version   Visualization version   GIF version

Theorem sylan9ssr 3949
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
Hypotheses
Ref Expression
sylan9ssr.1 (𝜑𝐴𝐵)
sylan9ssr.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ssr ((𝜓𝜑) → 𝐴𝐶)

Proof of Theorem sylan9ssr
StepHypRef Expression
1 sylan9ssr.1 . . 3 (𝜑𝐴𝐵)
2 sylan9ssr.2 . . 3 (𝜓𝐵𝐶)
31, 2sylan9ss 3948 . 2 ((𝜑𝜓) → 𝐴𝐶)
43ancoms 458 1 ((𝜓𝜑) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3919
This theorem is referenced by:  intssuni2  4923  marypha1  9318  cardinfima  9988  cfflb  10150  ssfin4  10201  acsfn  17565  mrelatlub  18468  efgval  19630  islbs3  21093  kgentopon  23454  txlly  23552  sigaclci  34143  bnj1014  34971  topjoin  36405  filnetlem3  36420  poimirlem16  37682  mblfinlem3  37705  sspwimpALT  44963  sspwimpALT2  44966  setrecsres  49740
  Copyright terms: Public domain W3C validator