Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9ssr | Structured version Visualization version GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) |
Ref | Expression |
---|---|
sylan9ssr.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sylan9ssr.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sylan9ssr | ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ssr.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sylan9ssr.2 | . . 3 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | sylan9ss 3930 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
4 | 3 | ancoms 458 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: intssuni2 4901 marypha1 9123 cardinfima 9784 cfflb 9946 ssfin4 9997 acsfn 17285 mrelatlub 18195 efgval 19238 islbs3 20332 kgentopon 22597 txlly 22695 sigaclci 32000 bnj1014 32841 topjoin 34481 filnetlem3 34496 poimirlem16 35720 mblfinlem3 35743 sspwimpALT 42434 sspwimpALT2 42437 setrecsres 46293 |
Copyright terms: Public domain | W3C validator |