![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssab | Structured version Visualization version GIF version |
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabssab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | simpr 484 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) | |
3 | 2 | ss2abi 4077 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝜑} |
4 | 1, 3 | eqsstri 4030 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 {cab 2712 {crab 3433 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-rab 3434 df-ss 3980 |
This theorem is referenced by: epse 5671 riotasbc 7406 cshwsexa 14859 toponsspwpw 22944 dmtopon 22945 aannenlem2 26386 aalioulem2 26390 ballotlemfmpn 34476 rencldnfilem 42808 rmxyelqirr 42898 rababg 43564 |
Copyright terms: Public domain | W3C validator |