MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssab Structured version   Visualization version   GIF version

Theorem rabssab 4014
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 3072 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 484 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 3996 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 3951 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  {cab 2715  {crab 3067  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  epse  5563  riotasbc  7231  toponsspwpw  21979  dmtopon  21980  aannenlem2  25394  aalioulem2  25398  ballotlemfmpn  32361  rencldnfilem  40558  rababg  41070
  Copyright terms: Public domain W3C validator