MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssab Structured version   Visualization version   GIF version

Theorem rabssab 4085
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 3437 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 484 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 4067 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 4030 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  {cab 2714  {crab 3436  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-rab 3437  df-ss 3968
This theorem is referenced by:  epse  5667  riotasbc  7406  cshwsexa  14862  toponsspwpw  22928  dmtopon  22929  aannenlem2  26371  aalioulem2  26375  ballotlemfmpn  34497  rencldnfilem  42831  rmxyelqirr  42921  rababg  43587
  Copyright terms: Public domain W3C validator