MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssab Structured version   Visualization version   GIF version

Theorem rabssab 4018
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 3073 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 485 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 4000 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 3955 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 396  wcel 2106  {cab 2715  {crab 3068  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  epse  5572  riotasbc  7251  toponsspwpw  22071  dmtopon  22072  aannenlem2  25489  aalioulem2  25493  ballotlemfmpn  32461  rencldnfilem  40642  rababg  41181
  Copyright terms: Public domain W3C validator