![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssab | Structured version Visualization version GIF version |
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
rabssab | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | simpr 484 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝜑) | |
3 | 2 | ss2abi 4090 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝜑} |
4 | 1, 3 | eqsstri 4043 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 {cab 2717 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-rab 3444 df-ss 3993 |
This theorem is referenced by: epse 5682 riotasbc 7423 cshwsexa 14872 toponsspwpw 22949 dmtopon 22950 aannenlem2 26389 aalioulem2 26393 ballotlemfmpn 34459 rencldnfilem 42776 rmxyelqirr 42866 rababg 43536 |
Copyright terms: Public domain | W3C validator |