Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssab Structured version   Visualization version   GIF version

Theorem rabssab 4014
 Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 3118 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 488 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 3997 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 3952 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   ∈ wcel 2112  {cab 2779  {crab 3113   ⊆ wss 3884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-rab 3118  df-v 3446  df-in 3891  df-ss 3901 This theorem is referenced by:  epse  5506  riotasbc  7115  toponsspwpw  21530  dmtopon  21531  aannenlem2  24928  aalioulem2  24932  ballotlemfmpn  31860  rencldnfilem  39748  rababg  40260
 Copyright terms: Public domain W3C validator