MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssab Structured version   Visualization version   GIF version

Theorem rabssab 4030
Description: A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabssab {𝑥𝐴𝜑} ⊆ {𝑥𝜑}

Proof of Theorem rabssab
StepHypRef Expression
1 df-rab 3396 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpr 484 . . 3 ((𝑥𝐴𝜑) → 𝜑)
32ss2abi 4013 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝜑}
41, 3eqsstri 3976 1 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  {cab 2709  {crab 3395  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-rab 3396  df-ss 3914
This theorem is referenced by:  epse  5593  riotasbc  7316  cshwsexa  14726  toponsspwpw  22832  dmtopon  22833  aannenlem2  26259  aalioulem2  26263  ballotlemfmpn  34500  fineqvnttrclse  35136  rencldnfilem  42853  rmxyelqirr  42943  rababg  43607
  Copyright terms: Public domain W3C validator