Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssrabd Structured version   Visualization version   GIF version

Theorem rabssrabd 4012
 Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022.)
Hypotheses
Ref Expression
rabssrabd.1 (𝜑𝐴𝐵)
rabssrabd.2 ((𝜑𝜓𝑥𝐴) → 𝜒)
Assertion
Ref Expression
rabssrabd (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabssrabd
StepHypRef Expression
1 3anan32 1094 . . . . 5 ((𝜑𝜓𝑥𝐴) ↔ ((𝜑𝑥𝐴) ∧ 𝜓))
2 rabssrabd.2 . . . . 5 ((𝜑𝜓𝑥𝐴) → 𝜒)
31, 2sylbir 238 . . . 4 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
43ex 416 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
54ss2rabdv 4006 . 2 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})
6 rabssrabd.1 . . 3 (𝜑𝐴𝐵)
7 rabss2 4008 . . 3 (𝐴𝐵 → {𝑥𝐴𝜒} ⊆ {𝑥𝐵𝜒})
86, 7syl 17 . 2 (𝜑 → {𝑥𝐴𝜒} ⊆ {𝑥𝐵𝜒})
95, 8sstrd 3928 1 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐵𝜒})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   ∈ wcel 2112  {crab 3113   ⊆ wss 3884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rab 3118  df-v 3446  df-in 3891  df-ss 3901 This theorem is referenced by:  suppfnss  7842  clwlknon2num  28157  numclwlk1lem2  28159
 Copyright terms: Public domain W3C validator