Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabssrabd | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022.) |
Ref | Expression |
---|---|
rabssrabd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
rabssrabd.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) |
Ref | Expression |
---|---|
rabssrabd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1095 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓)) | |
2 | rabssrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) | |
3 | 1, 2 | sylbir 234 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
4 | 3 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
5 | 4 | ss2rabdv 4005 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
6 | rabssrabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | rabss2 4007 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
9 | 5, 8 | sstrd 3927 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: suppfnss 7976 clwlknon2num 28633 numclwlk1lem2 28635 |
Copyright terms: Public domain | W3C validator |