![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssrabd | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022.) |
Ref | Expression |
---|---|
rabssrabd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
rabssrabd.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) |
Ref | Expression |
---|---|
rabssrabd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1097 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓)) | |
2 | rabssrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) | |
3 | 1, 2 | sylbir 234 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
4 | 3 | ex 413 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
5 | 4 | ss2rabdv 4072 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
6 | rabssrabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | rabss2 4074 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
9 | 5, 8 | sstrd 3991 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 {crab 3432 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rab 3433 df-v 3476 df-in 3954 df-ss 3964 |
This theorem is referenced by: suppfnss 8170 clwlknon2num 29610 numclwlk1lem2 29612 |
Copyright terms: Public domain | W3C validator |