![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabssrabd | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022.) |
Ref | Expression |
---|---|
rabssrabd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
rabssrabd.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) |
Ref | Expression |
---|---|
rabssrabd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan32 1098 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓)) | |
2 | rabssrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) | |
3 | 1, 2 | sylbir 234 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
4 | 3 | ex 414 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
5 | 4 | ss2rabdv 4034 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
6 | rabssrabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
7 | rabss2 4036 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
9 | 5, 8 | sstrd 3955 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 {crab 3406 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rab 3407 df-v 3446 df-in 3918 df-ss 3928 |
This theorem is referenced by: suppfnss 8121 clwlknon2num 29354 numclwlk1lem2 29356 |
Copyright terms: Public domain | W3C validator |