| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabssrabd | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022.) |
| Ref | Expression |
|---|---|
| rabssrabd.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| rabssrabd.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) |
| Ref | Expression |
|---|---|
| rabssrabd | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan32 1096 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓)) | |
| 2 | rabssrabd.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) | |
| 3 | 1, 2 | sylbir 235 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| 4 | 3 | ex 412 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 5 | 4 | ss2rabdv 4051 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| 6 | rabssrabd.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 7 | rabss2 4053 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 9 | 5, 8 | sstrd 3969 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-ss 3943 |
| This theorem is referenced by: suppfnss 8188 clwlknon2num 30349 numclwlk1lem2 30351 |
| Copyright terms: Public domain | W3C validator |