| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| subtr.1 | ⊢ Ⅎ𝑥𝐴 |
| subtr.2 | ⊢ Ⅎ𝑥𝐵 |
| subtr.3 | ⊢ Ⅎ𝑥𝑌 |
| subtr.4 | ⊢ Ⅎ𝑥𝑍 |
| subtr.5 | ⊢ (𝑥 = 𝐴 → 𝑋 = 𝑌) |
| subtr.6 | ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑍) |
| Ref | Expression |
|---|---|
| subtr | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → 𝑌 = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subtr.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | subtr.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2919 | . . . 4 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | subtr.3 | . . . . 5 ⊢ Ⅎ𝑥𝑌 | |
| 5 | subtr.4 | . . . . 5 ⊢ Ⅎ𝑥𝑍 | |
| 6 | 4, 5 | nfeq 2919 | . . . 4 ⊢ Ⅎ𝑥 𝑌 = 𝑍 |
| 7 | 3, 6 | nfim 1896 | . . 3 ⊢ Ⅎ𝑥(𝐴 = 𝐵 → 𝑌 = 𝑍) |
| 8 | eqeq1 2741 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
| 9 | subtr.5 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑋 = 𝑌) | |
| 10 | 9 | eqeq1d 2739 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑋 = 𝑍 ↔ 𝑌 = 𝑍)) |
| 11 | 8, 10 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐵 → 𝑋 = 𝑍) ↔ (𝐴 = 𝐵 → 𝑌 = 𝑍))) |
| 12 | subtr.6 | . . 3 ⊢ (𝑥 = 𝐵 → 𝑋 = 𝑍) | |
| 13 | 1, 7, 11, 12 | vtoclgf 3569 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 → 𝑌 = 𝑍)) |
| 14 | 13 | adantr 480 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → 𝑌 = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |