Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subtr Structured version   Visualization version   GIF version

Theorem subtr 34149
Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
subtr.1 𝑥𝐴
subtr.2 𝑥𝐵
subtr.3 𝑥𝑌
subtr.4 𝑥𝑍
subtr.5 (𝑥 = 𝐴𝑋 = 𝑌)
subtr.6 (𝑥 = 𝐵𝑋 = 𝑍)
Assertion
Ref Expression
subtr ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))

Proof of Theorem subtr
StepHypRef Expression
1 subtr.1 . . 3 𝑥𝐴
2 subtr.2 . . . . 5 𝑥𝐵
31, 2nfeq 2913 . . . 4 𝑥 𝐴 = 𝐵
4 subtr.3 . . . . 5 𝑥𝑌
5 subtr.4 . . . . 5 𝑥𝑍
64, 5nfeq 2913 . . . 4 𝑥 𝑌 = 𝑍
73, 6nfim 1903 . . 3 𝑥(𝐴 = 𝐵𝑌 = 𝑍)
8 eqeq1 2743 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
9 subtr.5 . . . . 5 (𝑥 = 𝐴𝑋 = 𝑌)
109eqeq1d 2741 . . . 4 (𝑥 = 𝐴 → (𝑋 = 𝑍𝑌 = 𝑍))
118, 10imbi12d 348 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝑋 = 𝑍) ↔ (𝐴 = 𝐵𝑌 = 𝑍)))
12 subtr.6 . . 3 (𝑥 = 𝐵𝑋 = 𝑍)
131, 7, 11, 12vtoclgf 3469 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝑌 = 𝑍))
1413adantr 484 1 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wnfc 2880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-v 3401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator