Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subtr Structured version   Visualization version   GIF version

Theorem subtr 34503
Description: Transitivity of implicit substitution. (Contributed by Jeff Hankins, 13-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
subtr.1 𝑥𝐴
subtr.2 𝑥𝐵
subtr.3 𝑥𝑌
subtr.4 𝑥𝑍
subtr.5 (𝑥 = 𝐴𝑋 = 𝑌)
subtr.6 (𝑥 = 𝐵𝑋 = 𝑍)
Assertion
Ref Expression
subtr ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))

Proof of Theorem subtr
StepHypRef Expression
1 subtr.1 . . 3 𝑥𝐴
2 subtr.2 . . . . 5 𝑥𝐵
31, 2nfeq 2920 . . . 4 𝑥 𝐴 = 𝐵
4 subtr.3 . . . . 5 𝑥𝑌
5 subtr.4 . . . . 5 𝑥𝑍
64, 5nfeq 2920 . . . 4 𝑥 𝑌 = 𝑍
73, 6nfim 1899 . . 3 𝑥(𝐴 = 𝐵𝑌 = 𝑍)
8 eqeq1 2742 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
9 subtr.5 . . . . 5 (𝑥 = 𝐴𝑋 = 𝑌)
109eqeq1d 2740 . . . 4 (𝑥 = 𝐴 → (𝑋 = 𝑍𝑌 = 𝑍))
118, 10imbi12d 345 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝑋 = 𝑍) ↔ (𝐴 = 𝐵𝑌 = 𝑍)))
12 subtr.6 . . 3 (𝑥 = 𝐵𝑋 = 𝑍)
131, 7, 11, 12vtoclgf 3503 . 2 (𝐴𝐶 → (𝐴 = 𝐵𝑌 = 𝑍))
1413adantr 481 1 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-v 3434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator