![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suceqd | Structured version Visualization version GIF version |
Description: Deduction associated with suceq 6435. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
Ref | Expression |
---|---|
suceqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
suceqd | ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | suceq 6435 | . 2 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 suc csuc 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-un 3952 df-sn 4630 df-suc 6375 |
This theorem is referenced by: scottrankd 43685 |
Copyright terms: Public domain | W3C validator |