MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suceqd Structured version   Visualization version   GIF version

Theorem suceqd 6399
Description: Deduction associated with suceq 6400. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypothesis
Ref Expression
suceqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
suceqd (𝜑 → suc 𝐴 = suc 𝐵)

Proof of Theorem suceqd
StepHypRef Expression
1 suceqd.1 . . 3 (𝜑𝐴 = 𝐵)
21sneqd 4601 . . 3 (𝜑 → {𝐴} = {𝐵})
31, 2uneq12d 4132 . 2 (𝜑 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵}))
4 df-suc 6338 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 df-suc 6338 . 2 suc 𝐵 = (𝐵 ∪ {𝐵})
63, 4, 53eqtr4g 2789 1 (𝜑 → suc 𝐴 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cun 3912  {csn 4589  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-sn 4590  df-suc 6338
This theorem is referenced by:  suceq  6400  nosupbnd2  27628  scottrankd  44237
  Copyright terms: Public domain W3C validator