MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suceqd Structured version   Visualization version   GIF version

Theorem suceqd 6373
Description: Deduction associated with suceq 6374. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypothesis
Ref Expression
suceqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
suceqd (𝜑 → suc 𝐴 = suc 𝐵)

Proof of Theorem suceqd
StepHypRef Expression
1 suceqd.1 . . 3 (𝜑𝐴 = 𝐵)
21sneqd 4585 . . 3 (𝜑 → {𝐴} = {𝐵})
31, 2uneq12d 4116 . 2 (𝜑 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵}))
4 df-suc 6312 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
5 df-suc 6312 . 2 suc 𝐵 = (𝐵 ∪ {𝐵})
63, 4, 53eqtr4g 2791 1 (𝜑 → suc 𝐴 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cun 3895  {csn 4573  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-suc 6312
This theorem is referenced by:  suceq  6374  nosupbnd2  27655  bdayiun  27860  fineqvnttrclselem3  35143  scottrankd  44351
  Copyright terms: Public domain W3C validator