MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suceqd Structured version   Visualization version   GIF version

Theorem suceqd 6425
Description: Deduction associated with suceq 6424. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypothesis
Ref Expression
suceqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
suceqd (𝜑 → suc 𝐴 = suc 𝐵)

Proof of Theorem suceqd
StepHypRef Expression
1 suceqd.1 . 2 (𝜑𝐴 = 𝐵)
2 suceq 6424 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
31, 2syl 17 1 (𝜑 → suc 𝐴 = suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-suc 6363
This theorem is referenced by:  nosupbnd2  27685  scottrankd  44239
  Copyright terms: Public domain W3C validator