| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suceqd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with suceq 6400. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| suceqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| suceqd | ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | sneqd 4601 | . . 3 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| 3 | 1, 2 | uneq12d 4132 | . 2 ⊢ (𝜑 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
| 4 | df-suc 6338 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | df-suc 6338 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 6 | 3, 4, 5 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cun 3912 {csn 4589 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-suc 6338 |
| This theorem is referenced by: suceq 6400 nosupbnd2 27628 scottrankd 44237 |
| Copyright terms: Public domain | W3C validator |