| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suceqd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with suceq 6424. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| suceqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| suceqd | ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | suceq 6424 | . 2 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-suc 6363 |
| This theorem is referenced by: nosupbnd2 27685 scottrankd 44239 |
| Copyright terms: Public domain | W3C validator |