| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suceqd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with suceq 6374. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| suceqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| suceqd | ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceqd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | sneqd 4585 | . . 3 ⊢ (𝜑 → {𝐴} = {𝐵}) |
| 3 | 1, 2 | uneq12d 4116 | . 2 ⊢ (𝜑 → (𝐴 ∪ {𝐴}) = (𝐵 ∪ {𝐵})) |
| 4 | df-suc 6312 | . 2 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 5 | df-suc 6312 | . 2 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 6 | 3, 4, 5 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → suc 𝐴 = suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3895 {csn 4573 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-suc 6312 |
| This theorem is referenced by: suceq 6374 nosupbnd2 27655 bdayiun 27860 fineqvnttrclselem3 35143 scottrankd 44351 |
| Copyright terms: Public domain | W3C validator |