Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottrankd Structured version   Visualization version   GIF version

Theorem scottrankd 41755
Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scottrankd.1 (𝜑𝐵 ∈ Scott 𝐴)
Assertion
Ref Expression
scottrankd (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))

Proof of Theorem scottrankd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scottex2 41752 . . . 4 Scott 𝐴 ∈ V
21rankval4 9556 . . 3 (rank‘Scott 𝐴) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)
32a1i 11 . 2 (𝜑 → (rank‘Scott 𝐴) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥))
4 scottrankd.1 . . . . . . 7 (𝜑𝐵 ∈ Scott 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴)
6 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴)
75, 6scottelrankd 41754 . . . . 5 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥))
86, 5scottelrankd 41754 . . . . 5 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵))
97, 8eqssd 3934 . . . 4 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥))
109suceqd 41711 . . 3 ((𝜑𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥))
1110iuneq2dv 4945 . 2 (𝜑 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥))
124ne0d 4266 . . 3 (𝜑 → Scott 𝐴 ≠ ∅)
13 iunconst 4930 . . 3 (Scott 𝐴 ≠ ∅ → 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵))
1412, 13syl 17 . 2 (𝜑 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵))
153, 11, 143eqtr2d 2784 1 (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253   ciun 4921  suc csuc 6253  cfv 6418  rankcrnk 9452  Scott cscott 41742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-reg 9281  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-r1 9453  df-rank 9454  df-scott 41743
This theorem is referenced by:  gruscottcld  41756
  Copyright terms: Public domain W3C validator