![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottrankd | Structured version Visualization version GIF version |
Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottrankd.1 | β’ (π β π΅ β Scott π΄) |
Ref | Expression |
---|---|
scottrankd | β’ (π β (rankβScott π΄) = suc (rankβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottex2 42994 | . . . 4 β’ Scott π΄ β V | |
2 | 1 | rankval4 9861 | . . 3 β’ (rankβScott π΄) = βͺ π₯ β Scott π΄ suc (rankβπ₯) |
3 | 2 | a1i 11 | . 2 β’ (π β (rankβScott π΄) = βͺ π₯ β Scott π΄ suc (rankβπ₯)) |
4 | scottrankd.1 | . . . . . . 7 β’ (π β π΅ β Scott π΄) | |
5 | 4 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β Scott π΄) β π΅ β Scott π΄) |
6 | simpr 485 | . . . . . 6 β’ ((π β§ π₯ β Scott π΄) β π₯ β Scott π΄) | |
7 | 5, 6 | scottelrankd 42996 | . . . . 5 β’ ((π β§ π₯ β Scott π΄) β (rankβπ΅) β (rankβπ₯)) |
8 | 6, 5 | scottelrankd 42996 | . . . . 5 β’ ((π β§ π₯ β Scott π΄) β (rankβπ₯) β (rankβπ΅)) |
9 | 7, 8 | eqssd 3999 | . . . 4 β’ ((π β§ π₯ β Scott π΄) β (rankβπ΅) = (rankβπ₯)) |
10 | 9 | suceqd 42953 | . . 3 β’ ((π β§ π₯ β Scott π΄) β suc (rankβπ΅) = suc (rankβπ₯)) |
11 | 10 | iuneq2dv 5021 | . 2 β’ (π β βͺ π₯ β Scott π΄ suc (rankβπ΅) = βͺ π₯ β Scott π΄ suc (rankβπ₯)) |
12 | 4 | ne0d 4335 | . . 3 β’ (π β Scott π΄ β β ) |
13 | iunconst 5006 | . . 3 β’ (Scott π΄ β β β βͺ π₯ β Scott π΄ suc (rankβπ΅) = suc (rankβπ΅)) | |
14 | 12, 13 | syl 17 | . 2 β’ (π β βͺ π₯ β Scott π΄ suc (rankβπ΅) = suc (rankβπ΅)) |
15 | 3, 11, 14 | 3eqtr2d 2778 | 1 β’ (π β (rankβScott π΄) = suc (rankβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β c0 4322 βͺ ciun 4997 suc csuc 6366 βcfv 6543 rankcrnk 9757 Scott cscott 42984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-r1 9758 df-rank 9759 df-scott 42985 |
This theorem is referenced by: gruscottcld 42998 |
Copyright terms: Public domain | W3C validator |