Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottrankd Structured version   Visualization version   GIF version

Theorem scottrankd 42997
Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scottrankd.1 (πœ‘ β†’ 𝐡 ∈ Scott 𝐴)
Assertion
Ref Expression
scottrankd (πœ‘ β†’ (rankβ€˜Scott 𝐴) = suc (rankβ€˜π΅))

Proof of Theorem scottrankd
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 scottex2 42994 . . . 4 Scott 𝐴 ∈ V
21rankval4 9861 . . 3 (rankβ€˜Scott 𝐴) = βˆͺ π‘₯ ∈ Scott 𝐴 suc (rankβ€˜π‘₯)
32a1i 11 . 2 (πœ‘ β†’ (rankβ€˜Scott 𝐴) = βˆͺ π‘₯ ∈ Scott 𝐴 suc (rankβ€˜π‘₯))
4 scottrankd.1 . . . . . . 7 (πœ‘ β†’ 𝐡 ∈ Scott 𝐴)
54adantr 481 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ Scott 𝐴) β†’ 𝐡 ∈ Scott 𝐴)
6 simpr 485 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ Scott 𝐴) β†’ π‘₯ ∈ Scott 𝐴)
75, 6scottelrankd 42996 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ Scott 𝐴) β†’ (rankβ€˜π΅) βŠ† (rankβ€˜π‘₯))
86, 5scottelrankd 42996 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ Scott 𝐴) β†’ (rankβ€˜π‘₯) βŠ† (rankβ€˜π΅))
97, 8eqssd 3999 . . . 4 ((πœ‘ ∧ π‘₯ ∈ Scott 𝐴) β†’ (rankβ€˜π΅) = (rankβ€˜π‘₯))
109suceqd 42953 . . 3 ((πœ‘ ∧ π‘₯ ∈ Scott 𝐴) β†’ suc (rankβ€˜π΅) = suc (rankβ€˜π‘₯))
1110iuneq2dv 5021 . 2 (πœ‘ β†’ βˆͺ π‘₯ ∈ Scott 𝐴 suc (rankβ€˜π΅) = βˆͺ π‘₯ ∈ Scott 𝐴 suc (rankβ€˜π‘₯))
124ne0d 4335 . . 3 (πœ‘ β†’ Scott 𝐴 β‰  βˆ…)
13 iunconst 5006 . . 3 (Scott 𝐴 β‰  βˆ… β†’ βˆͺ π‘₯ ∈ Scott 𝐴 suc (rankβ€˜π΅) = suc (rankβ€˜π΅))
1412, 13syl 17 . 2 (πœ‘ β†’ βˆͺ π‘₯ ∈ Scott 𝐴 suc (rankβ€˜π΅) = suc (rankβ€˜π΅))
153, 11, 143eqtr2d 2778 1 (πœ‘ β†’ (rankβ€˜Scott 𝐴) = suc (rankβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ…c0 4322  βˆͺ ciun 4997  suc csuc 6366  β€˜cfv 6543  rankcrnk 9757  Scott cscott 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-reg 9586  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-r1 9758  df-rank 9759  df-scott 42985
This theorem is referenced by:  gruscottcld  42998
  Copyright terms: Public domain W3C validator