| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottrankd | Structured version Visualization version GIF version | ||
| Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| scottrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
| Ref | Expression |
|---|---|
| scottrankd | ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scottex2 44284 | . . . 4 ⊢ Scott 𝐴 ∈ V | |
| 2 | 1 | rankval4 9760 | . . 3 ⊢ (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
| 4 | scottrankd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴) | |
| 7 | 5, 6 | scottelrankd 44286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥)) |
| 8 | 6, 5 | scottelrankd 44286 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵)) |
| 9 | 7, 8 | eqssd 3952 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥)) |
| 10 | 9 | suceqd 6373 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥)) |
| 11 | 10 | iuneq2dv 4966 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
| 12 | 4 | ne0d 4292 | . . 3 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
| 13 | iunconst 4951 | . . 3 ⊢ (Scott 𝐴 ≠ ∅ → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) |
| 15 | 3, 11, 14 | 3eqtr2d 2772 | 1 ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 ∪ ciun 4941 suc csuc 6308 ‘cfv 6481 rankcrnk 9656 Scott cscott 44274 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 df-scott 44275 |
| This theorem is referenced by: gruscottcld 44288 |
| Copyright terms: Public domain | W3C validator |