Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottrankd Structured version   Visualization version   GIF version

Theorem scottrankd 44221
Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scottrankd.1 (𝜑𝐵 ∈ Scott 𝐴)
Assertion
Ref Expression
scottrankd (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))

Proof of Theorem scottrankd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scottex2 44218 . . . 4 Scott 𝐴 ∈ V
21rankval4 9782 . . 3 (rank‘Scott 𝐴) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)
32a1i 11 . 2 (𝜑 → (rank‘Scott 𝐴) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥))
4 scottrankd.1 . . . . . . 7 (𝜑𝐵 ∈ Scott 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴)
6 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴)
75, 6scottelrankd 44220 . . . . 5 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥))
86, 5scottelrankd 44220 . . . . 5 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵))
97, 8eqssd 3955 . . . 4 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥))
109suceqd 6378 . . 3 ((𝜑𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥))
1110iuneq2dv 4969 . 2 (𝜑 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥))
124ne0d 4295 . . 3 (𝜑 → Scott 𝐴 ≠ ∅)
13 iunconst 4954 . . 3 (Scott 𝐴 ≠ ∅ → 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵))
1412, 13syl 17 . 2 (𝜑 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵))
153, 11, 143eqtr2d 2770 1 (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4286   ciun 4944  suc csuc 6313  cfv 6486  rankcrnk 9678  Scott cscott 44208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-r1 9679  df-rank 9680  df-scott 44209
This theorem is referenced by:  gruscottcld  44222
  Copyright terms: Public domain W3C validator