Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottrankd Structured version   Visualization version   GIF version

Theorem scottrankd 44237
Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypothesis
Ref Expression
scottrankd.1 (𝜑𝐵 ∈ Scott 𝐴)
Assertion
Ref Expression
scottrankd (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))

Proof of Theorem scottrankd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 scottex2 44234 . . . 4 Scott 𝐴 ∈ V
21rankval4 9820 . . 3 (rank‘Scott 𝐴) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)
32a1i 11 . 2 (𝜑 → (rank‘Scott 𝐴) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥))
4 scottrankd.1 . . . . . . 7 (𝜑𝐵 ∈ Scott 𝐴)
54adantr 480 . . . . . 6 ((𝜑𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴)
6 simpr 484 . . . . . 6 ((𝜑𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴)
75, 6scottelrankd 44236 . . . . 5 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥))
86, 5scottelrankd 44236 . . . . 5 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵))
97, 8eqssd 3964 . . . 4 ((𝜑𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥))
109suceqd 6399 . . 3 ((𝜑𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥))
1110iuneq2dv 4980 . 2 (𝜑 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥))
124ne0d 4305 . . 3 (𝜑 → Scott 𝐴 ≠ ∅)
13 iunconst 4965 . . 3 (Scott 𝐴 ≠ ∅ → 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵))
1412, 13syl 17 . 2 (𝜑 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵))
153, 11, 143eqtr2d 2770 1 (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296   ciun 4955  suc csuc 6334  cfv 6511  rankcrnk 9716  Scott cscott 44224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718  df-scott 44225
This theorem is referenced by:  gruscottcld  44238
  Copyright terms: Public domain W3C validator