Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottrankd | Structured version Visualization version GIF version |
Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
scottrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
Ref | Expression |
---|---|
scottrankd | ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottex2 41863 | . . . 4 ⊢ Scott 𝐴 ∈ V | |
2 | 1 | rankval4 9625 | . . 3 ⊢ (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
4 | scottrankd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
5 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴) |
6 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴) | |
7 | 5, 6 | scottelrankd 41865 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥)) |
8 | 6, 5 | scottelrankd 41865 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵)) |
9 | 7, 8 | eqssd 3938 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥)) |
10 | 9 | suceqd 41822 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥)) |
11 | 10 | iuneq2dv 4948 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
12 | 4 | ne0d 4269 | . . 3 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
13 | iunconst 4933 | . . 3 ⊢ (Scott 𝐴 ≠ ∅ → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) |
15 | 3, 11, 14 | 3eqtr2d 2784 | 1 ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ∪ ciun 4924 suc csuc 6268 ‘cfv 6433 rankcrnk 9521 Scott cscott 41853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-r1 9522 df-rank 9523 df-scott 41854 |
This theorem is referenced by: gruscottcld 41867 |
Copyright terms: Public domain | W3C validator |