| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottrankd | Structured version Visualization version GIF version | ||
| Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| scottrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
| Ref | Expression |
|---|---|
| scottrankd | ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scottex2 44236 | . . . 4 ⊢ Scott 𝐴 ∈ V | |
| 2 | 1 | rankval4 9886 | . . 3 ⊢ (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
| 4 | scottrankd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴) | |
| 7 | 5, 6 | scottelrankd 44238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥)) |
| 8 | 6, 5 | scottelrankd 44238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵)) |
| 9 | 7, 8 | eqssd 3981 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥)) |
| 10 | 9 | suceqd 6425 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥)) |
| 11 | 10 | iuneq2dv 4997 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
| 12 | 4 | ne0d 4322 | . . 3 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
| 13 | iunconst 4982 | . . 3 ⊢ (Scott 𝐴 ≠ ∅ → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) |
| 15 | 3, 11, 14 | 3eqtr2d 2777 | 1 ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 ∪ ciun 4972 suc csuc 6359 ‘cfv 6536 rankcrnk 9782 Scott cscott 44226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-r1 9783 df-rank 9784 df-scott 44227 |
| This theorem is referenced by: gruscottcld 44240 |
| Copyright terms: Public domain | W3C validator |