| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottrankd | Structured version Visualization version GIF version | ||
| Description: Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
| Ref | Expression |
|---|---|
| scottrankd.1 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
| Ref | Expression |
|---|---|
| scottrankd | ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scottex2 44365 | . . . 4 ⊢ Scott 𝐴 ∈ V | |
| 2 | 1 | rankval4 9769 | . . 3 ⊢ (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥) |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → (rank‘Scott 𝐴) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
| 4 | scottrankd.1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝐵 ∈ Scott 𝐴) |
| 6 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → 𝑥 ∈ Scott 𝐴) | |
| 7 | 5, 6 | scottelrankd 44367 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) ⊆ (rank‘𝑥)) |
| 8 | 6, 5 | scottelrankd 44367 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝑥) ⊆ (rank‘𝐵)) |
| 9 | 7, 8 | eqssd 3948 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → (rank‘𝐵) = (rank‘𝑥)) |
| 10 | 9 | suceqd 6380 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ Scott 𝐴) → suc (rank‘𝐵) = suc (rank‘𝑥)) |
| 11 | 10 | iuneq2dv 4968 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝑥)) |
| 12 | 4 | ne0d 4291 | . . 3 ⊢ (𝜑 → Scott 𝐴 ≠ ∅) |
| 13 | iunconst 4953 | . . 3 ⊢ (Scott 𝐴 ≠ ∅ → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝑥 ∈ Scott 𝐴 suc (rank‘𝐵) = suc (rank‘𝐵)) |
| 15 | 3, 11, 14 | 3eqtr2d 2774 | 1 ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 ∪ ciun 4943 suc csuc 6315 ‘cfv 6488 rankcrnk 9665 Scott cscott 44355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-reg 9487 ax-inf2 9540 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-r1 9666 df-rank 9667 df-scott 44356 |
| This theorem is referenced by: gruscottcld 44369 |
| Copyright terms: Public domain | W3C validator |