| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfindsd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with tfinds 7839. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
| Ref | Expression |
|---|---|
| tfindsd.1 | ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) |
| tfindsd.2 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) |
| tfindsd.3 | ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) |
| tfindsd.4 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) |
| tfindsd.5 | ⊢ (𝜑 → 𝜒) |
| tfindsd.6 | ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) |
| tfindsd.7 | ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) |
| tfindsd.8 | ⊢ (𝜑 → 𝐴 ∈ On) |
| Ref | Expression |
|---|---|
| tfindsd | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfindsd.8 | . 2 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 2 | tfindsd.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) | |
| 3 | tfindsd.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) | |
| 4 | tfindsd.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) | |
| 5 | tfindsd.4 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) | |
| 6 | tfindsd.5 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 7 | tfindsd.6 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) | |
| 8 | 7 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ On → (𝜃 → 𝜏))) |
| 9 | 8 | com12 32 | . . 3 ⊢ (𝑦 ∈ On → (𝜑 → (𝜃 → 𝜏))) |
| 10 | tfindsd.7 | . . . . 5 ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) | |
| 11 | 10 | 3exp 1119 | . . . 4 ⊢ (𝜑 → (Lim 𝑥 → (∀𝑦 ∈ 𝑥 𝜃 → 𝜓))) |
| 12 | 11 | com12 32 | . . 3 ⊢ (Lim 𝑥 → (𝜑 → (∀𝑦 ∈ 𝑥 𝜃 → 𝜓))) |
| 13 | 2, 3, 4, 5, 6, 9, 12 | tfinds3 7844 | . 2 ⊢ (𝐴 ∈ On → (𝜑 → 𝜂)) |
| 14 | 1, 13 | mpcom 38 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∅c0 4299 Oncon0 6335 Lim wlim 6336 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 |
| This theorem is referenced by: grur1cld 44228 |
| Copyright terms: Public domain | W3C validator |