Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfindsd Structured version   Visualization version   GIF version

Theorem tfindsd 41823
Description: Deduction associated with tfinds 7706. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypotheses
Ref Expression
tfindsd.1 (𝑥 = ∅ → (𝜓𝜒))
tfindsd.2 (𝑥 = 𝑦 → (𝜓𝜃))
tfindsd.3 (𝑥 = suc 𝑦 → (𝜓𝜏))
tfindsd.4 (𝑥 = 𝐴 → (𝜓𝜂))
tfindsd.5 (𝜑𝜒)
tfindsd.6 ((𝜑𝑦 ∈ On ∧ 𝜃) → 𝜏)
tfindsd.7 ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦𝑥 𝜃) → 𝜓)
tfindsd.8 (𝜑𝐴 ∈ On)
Assertion
Ref Expression
tfindsd (𝜑𝜂)
Distinct variable groups:   𝜓,𝑦   𝜃,𝑥   𝜂,𝑥   𝑥,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝜃(𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsd
StepHypRef Expression
1 tfindsd.8 . 2 (𝜑𝐴 ∈ On)
2 tfindsd.1 . . 3 (𝑥 = ∅ → (𝜓𝜒))
3 tfindsd.2 . . 3 (𝑥 = 𝑦 → (𝜓𝜃))
4 tfindsd.3 . . 3 (𝑥 = suc 𝑦 → (𝜓𝜏))
5 tfindsd.4 . . 3 (𝑥 = 𝐴 → (𝜓𝜂))
6 tfindsd.5 . . 3 (𝜑𝜒)
7 tfindsd.6 . . . . 5 ((𝜑𝑦 ∈ On ∧ 𝜃) → 𝜏)
873exp 1118 . . . 4 (𝜑 → (𝑦 ∈ On → (𝜃𝜏)))
98com12 32 . . 3 (𝑦 ∈ On → (𝜑 → (𝜃𝜏)))
10 tfindsd.7 . . . . 5 ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦𝑥 𝜃) → 𝜓)
11103exp 1118 . . . 4 (𝜑 → (Lim 𝑥 → (∀𝑦𝑥 𝜃𝜓)))
1211com12 32 . . 3 (Lim 𝑥 → (𝜑 → (∀𝑦𝑥 𝜃𝜓)))
132, 3, 4, 5, 6, 9, 12tfinds3 7711 . 2 (𝐴 ∈ On → (𝜑𝜂))
141, 13mpcom 38 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wral 3064  c0 4256  Oncon0 6266  Lim wlim 6267  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272
This theorem is referenced by:  grur1cld  41850
  Copyright terms: Public domain W3C validator