|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl212anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) | 
| syl3anc.2 | ⊢ (𝜑 → 𝜒) | 
| syl3anc.3 | ⊢ (𝜑 → 𝜃) | 
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) | 
| syl23anc.5 | ⊢ (𝜑 → 𝜂) | 
| syl212anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁) | 
| Ref | Expression | 
|---|---|
| syl212anc | ⊢ (𝜑 → 𝜁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) | 
| 7 | syl212anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ (𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 1, 2, 3, 6, 7 | syl211anc 1378 | 1 ⊢ (𝜑 → 𝜁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: pntrmax 27608 tglineineq 28651 tglineinteq 28653 paddasslem4 39825 4atexlemu 40066 4atexlemv 40067 cdleme20aN 40311 cdleme20g 40317 cdlemg9a 40634 cdlemg12a 40645 cdlemg17dALTN 40666 cdlemg18b 40681 cdlemg18c 40682 | 
| Copyright terms: Public domain | W3C validator |