Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20aN Structured version   Visualization version   GIF version

Theorem cdleme20aN 37911
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114. 𝐷, 𝐹, 𝑌, 𝐺 represent s2, f(s), t2, f(t). (Contributed by NM, 14-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme19.l = (le‘𝐾)
cdleme19.j = (join‘𝐾)
cdleme19.m = (meet‘𝐾)
cdleme19.a 𝐴 = (Atoms‘𝐾)
cdleme19.h 𝐻 = (LHyp‘𝐾)
cdleme19.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme19.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme19.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme19.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme19.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme20.v 𝑉 = ((𝑆 𝑇) 𝑊)
Assertion
Ref Expression
cdleme20aN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑉 𝐷) = (((𝑆 𝑅) 𝑇) 𝑊))

Proof of Theorem cdleme20aN
StepHypRef Expression
1 cdleme20.v . . 3 𝑉 = ((𝑆 𝑇) 𝑊)
21oveq1i 7165 . 2 (𝑉 𝐷) = (((𝑆 𝑇) 𝑊) 𝐷)
3 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ HL)
4 simp1r 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑊𝐻)
5 simp22 1204 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑆𝐴)
6 simp23 1205 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 𝑊)
7 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅𝐴)
8 simp33 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
9 simp32 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
10 cdleme19.l . . . . . 6 = (le‘𝐾)
11 cdleme19.j . . . . . 6 = (join‘𝐾)
12 cdleme19.m . . . . . 6 = (meet‘𝐾)
13 cdleme19.a . . . . . 6 𝐴 = (Atoms‘𝐾)
14 cdleme19.h . . . . . 6 𝐻 = (LHyp‘𝐾)
15 cdleme19.d . . . . . 6 𝐷 = ((𝑅 𝑆) 𝑊)
1610, 11, 12, 13, 14, 15cdlemeda 37900 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑅𝐴𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐷𝐴)
173, 4, 5, 6, 7, 8, 9, 16syl223anc 1393 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐷𝐴)
18 simp31 1206 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑇𝐴)
19 eqid 2758 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2019, 11, 13hlatjcl 36969 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 𝑇) ∈ (Base‘𝐾))
213, 5, 18, 20syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 𝑇) ∈ (Base‘𝐾))
2219, 14lhpbase 37600 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
234, 22syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝑊 ∈ (Base‘𝐾))
243hllatd 36966 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐾 ∈ Lat)
2519, 11, 13hlatjcl 36969 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
263, 7, 5, 25syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑅 𝑆) ∈ (Base‘𝐾))
2719, 10, 12latmle2 17758 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑅 𝑆) 𝑊) 𝑊)
2824, 26, 23, 27syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑅 𝑆) 𝑊) 𝑊)
2915, 28eqbrtrid 5070 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → 𝐷 𝑊)
3019, 10, 11, 12, 13atmod4i1 37468 . . . 4 ((𝐾 ∈ HL ∧ (𝐷𝐴 ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝐷 𝑊) → (((𝑆 𝑇) 𝑊) 𝐷) = (((𝑆 𝑇) 𝐷) 𝑊))
313, 17, 21, 23, 29, 30syl131anc 1380 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑇) 𝑊) 𝐷) = (((𝑆 𝑇) 𝐷) 𝑊))
3210, 11, 12, 13, 14, 15cdleme10 37856 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑅𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) → (𝑆 𝐷) = (𝑆 𝑅))
333, 4, 7, 5, 6, 32syl212anc 1377 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑆 𝐷) = (𝑆 𝑅))
3433oveq1d 7170 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑆 𝐷) 𝑇) = ((𝑆 𝑅) 𝑇))
3511, 13hlatj32 36974 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝐴𝐷𝐴𝑇𝐴)) → ((𝑆 𝐷) 𝑇) = ((𝑆 𝑇) 𝐷))
363, 5, 17, 18, 35syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑆 𝐷) 𝑇) = ((𝑆 𝑇) 𝐷))
3734, 36eqtr3d 2795 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → ((𝑆 𝑅) 𝑇) = ((𝑆 𝑇) 𝐷))
3837oveq1d 7170 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑅) 𝑇) 𝑊) = (((𝑆 𝑇) 𝐷) 𝑊))
3931, 38eqtr4d 2796 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (((𝑆 𝑇) 𝑊) 𝐷) = (((𝑆 𝑅) 𝑇) 𝑊))
402, 39syl5eq 2805 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄))) → (𝑉 𝐷) = (((𝑆 𝑅) 𝑇) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111   class class class wbr 5035  cfv 6339  (class class class)co 7155  Basecbs 16546  lecple 16635  joincjn 17625  meetcmee 17626  Latclat 17726  Atomscatm 36865  HLchlt 36952  LHypclh 37586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-1st 7698  df-2nd 7699  df-proset 17609  df-poset 17627  df-plt 17639  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-p0 17720  df-p1 17721  df-lat 17727  df-clat 17789  df-oposet 36778  df-ol 36780  df-oml 36781  df-covers 36868  df-ats 36869  df-atl 36900  df-cvlat 36924  df-hlat 36953  df-psubsp 37105  df-pmap 37106  df-padd 37398  df-lhyp 37590
This theorem is referenced by:  cdleme20bN  37912
  Copyright terms: Public domain W3C validator