Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem4 Structured version   Visualization version   GIF version

Theorem paddasslem4 39842
Description: Lemma for paddass 39857. Combine paddasslem1 39839, paddasslem2 39840, and paddasslem3 39841. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ∃𝑠𝐴 (𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))
Distinct variable groups:   𝐴,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑠,𝑝   𝑠,𝑟   𝑥,𝑠   𝑦,𝑠   𝑧,𝑠
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑟,𝑝)   (𝑥,𝑦,𝑧,𝑟,𝑝)   𝐾(𝑥,𝑦,𝑧,𝑟,𝑝)   (𝑥,𝑦,𝑧,𝑟,𝑝)

Proof of Theorem paddasslem4
StepHypRef Expression
1 simpl11 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝐾 ∈ HL)
2 simpl21 1252 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑥𝐴)
3 simpl13 1251 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑟𝐴)
4 simpl22 1253 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑦𝐴)
52, 3, 43jca 1128 . . 3 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → (𝑥𝐴𝑟𝐴𝑦𝐴))
6 simpl12 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝𝐴)
7 simpl23 1254 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑧𝐴)
86, 7jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → (𝑝𝐴𝑧𝐴))
91, 5, 83jca 1128 . 2 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → (𝐾 ∈ HL ∧ (𝑥𝐴𝑟𝐴𝑦𝐴) ∧ (𝑝𝐴𝑧𝐴)))
10 simpl32 1256 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑥𝑦)
11 simpl33 1257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ¬ 𝑟 (𝑥 𝑦))
12 paddasslem.l . . . . 5 = (le‘𝐾)
13 paddasslem.j . . . . 5 = (join‘𝐾)
14 paddasslem.a . . . . 5 𝐴 = (Atoms‘𝐾)
1512, 13, 14paddasslem1 39839 . . . 4 (((𝐾 ∈ HL ∧ (𝑥𝐴𝑟𝐴𝑦𝐴) ∧ 𝑥𝑦) ∧ ¬ 𝑟 (𝑥 𝑦)) → ¬ 𝑥 (𝑟 𝑦))
161, 5, 10, 11, 15syl31anc 1375 . . 3 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ¬ 𝑥 (𝑟 𝑦))
17 simpl31 1255 . . 3 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝𝑧)
18 simprl 770 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑝 (𝑥 𝑟))
19 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → (𝑥𝐴𝑦𝐴𝑧𝐴))
20 simprr 772 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑟 (𝑦 𝑧))
2112, 13, 14paddasslem2 39840 . . . . 5 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑧 (𝑟 𝑦))
221, 3, 19, 11, 20, 21syl212anc 1382 . . . 4 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → 𝑧 (𝑟 𝑦))
2318, 22jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → (𝑝 (𝑥 𝑟) ∧ 𝑧 (𝑟 𝑦)))
2416, 17, 23jca31 514 . 2 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ((¬ 𝑥 (𝑟 𝑦) ∧ 𝑝𝑧) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑧 (𝑟 𝑦))))
2512, 13, 14paddasslem3 39841 . 2 ((𝐾 ∈ HL ∧ (𝑥𝐴𝑟𝐴𝑦𝐴) ∧ (𝑝𝐴𝑧𝐴)) → (((¬ 𝑥 (𝑟 𝑦) ∧ 𝑝𝑧) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑧 (𝑟 𝑦))) → ∃𝑠𝐴 (𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧))))
269, 24, 25sylc 65 1 ((((𝐾 ∈ HL ∧ 𝑝𝐴𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (𝑝𝑧𝑥𝑦 ∧ ¬ 𝑟 (𝑥 𝑦))) ∧ (𝑝 (𝑥 𝑟) ∧ 𝑟 (𝑦 𝑧))) → ∃𝑠𝐴 (𝑠 (𝑥 𝑦) ∧ 𝑠 (𝑝 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  lecple 17278  joincjn 18323  Atomscatm 39281  HLchlt 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-lat 18442  df-clat 18509  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369
This theorem is referenced by:  paddasslem10  39848
  Copyright terms: Public domain W3C validator