Proof of Theorem paddasslem4
Step | Hyp | Ref
| Expression |
1 | | simpl11 1247 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝐾 ∈ HL) |
2 | | simpl21 1250 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑥 ∈ 𝐴) |
3 | | simpl13 1249 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑟 ∈ 𝐴) |
4 | | simpl22 1251 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑦 ∈ 𝐴) |
5 | 2, 3, 4 | 3jca 1127 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → (𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
6 | | simpl12 1248 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ∈ 𝐴) |
7 | | simpl23 1252 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑧 ∈ 𝐴) |
8 | 6, 7 | jca 512 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → (𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
9 | 1, 5, 8 | 3jca 1127 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → (𝐾 ∈ HL ∧ (𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴))) |
10 | | simpl32 1254 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑥 ≠ 𝑦) |
11 | | simpl33 1255 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ¬ 𝑟 ≤ (𝑥 ∨ 𝑦)) |
12 | | paddasslem.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
13 | | paddasslem.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
14 | | paddasslem.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
15 | 12, 13, 14 | paddasslem1 37834 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦)) → ¬ 𝑥 ≤ (𝑟 ∨ 𝑦)) |
16 | 1, 5, 10, 11, 15 | syl31anc 1372 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ¬ 𝑥 ≤ (𝑟 ∨ 𝑦)) |
17 | | simpl31 1253 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ≠ 𝑧) |
18 | | simprl 768 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑝 ≤ (𝑥 ∨ 𝑟)) |
19 | | simpl2 1191 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) |
20 | | simprr 770 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑟 ≤ (𝑦 ∨ 𝑧)) |
21 | 12, 13, 14 | paddasslem2 37835 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (¬ 𝑟 ≤ (𝑥 ∨ 𝑦) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑧 ≤ (𝑟 ∨ 𝑦)) |
22 | 1, 3, 19, 11, 20, 21 | syl212anc 1379 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → 𝑧 ≤ (𝑟 ∨ 𝑦)) |
23 | 18, 22 | jca 512 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑧 ≤ (𝑟 ∨ 𝑦))) |
24 | 16, 17, 23 | jca31 515 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ((¬ 𝑥 ≤ (𝑟 ∨ 𝑦) ∧ 𝑝 ≠ 𝑧) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑧 ≤ (𝑟 ∨ 𝑦)))) |
25 | 12, 13, 14 | paddasslem3 37836 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑥 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (((¬ 𝑥 ≤ (𝑟 ∨ 𝑦) ∧ 𝑝 ≠ 𝑧) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑧 ≤ (𝑟 ∨ 𝑦))) → ∃𝑠 ∈ 𝐴 (𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧)))) |
26 | 9, 24, 25 | sylc 65 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (𝑝 ≠ 𝑧 ∧ 𝑥 ≠ 𝑦 ∧ ¬ 𝑟 ≤ (𝑥 ∨ 𝑦))) ∧ (𝑝 ≤ (𝑥 ∨ 𝑟) ∧ 𝑟 ≤ (𝑦 ∨ 𝑧))) → ∃𝑠 ∈ 𝐴 (𝑠 ≤ (𝑥 ∨ 𝑦) ∧ 𝑠 ≤ (𝑝 ∨ 𝑧))) |