MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrmax Structured version   Visualization version   GIF version

Theorem pntrmax 27527
Description: There is a bound on the residual valid for all 𝑥. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrmax 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Distinct variable groups:   𝑥,𝑎   𝑥,𝑐,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrmax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpssre 13016 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 1red 11236 . . 3 (⊤ → 1 ∈ ℝ)
4 pntrval.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
54pntrval 27525 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
6 rpre 13017 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7 chpcl 27086 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
86, 7syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
98, 6resubcld 11665 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) − 𝑥) ∈ ℝ)
105, 9eqeltrd 2834 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
11 rerpdivcl 13039 . . . . . 6 (((𝑅𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1210, 11mpancom 688 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1312recnd 11263 . . . 4 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℂ)
1413adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℂ)
155oveq1d 7420 . . . . . 6 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
168recnd 11263 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
17 rpcn 13019 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
18 rpne0 13025 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1916, 17, 17, 18divsubdird 12056 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
2017, 18dividd 12015 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 𝑥) = 1)
2120oveq2d 7421 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
2215, 19, 213eqtrd 2774 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
2322mpteq2ia 5216 . . . 4 (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1))
24 rerpdivcl 13039 . . . . . . 7 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258, 24mpancom 688 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
2625adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
27 1red 11236 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
28 chpo1ub 27443 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
2928a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
30 ax-1cn 11187 . . . . . . 7 1 ∈ ℂ
31 o1const 15636 . . . . . . 7 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
321, 30, 31mp2an 692 . . . . . 6 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
3426, 27, 29, 33o1sub2 15642 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1)) ∈ 𝑂(1))
3523, 34eqeltrid 2838 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) ∈ 𝑂(1))
36 chpcl 27086 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
37 peano2re 11408 . . . . 5 ((ψ‘𝑦) ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3836, 37syl 17 . . . 4 (𝑦 ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3938ad2antrl 728 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 1) ∈ ℝ)
40223ad2ant1 1133 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
4140fveq2d 6880 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘(((ψ‘𝑥) / 𝑥) − 1)))
42 1re 11235 . . . . . . . . . 10 1 ∈ ℝ
43383ad2ant2 1134 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 1) ∈ ℝ)
44 resubcl 11547 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
4542, 43, 44sylancr 587 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
46 0red 11238 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
47253ad2ant1 1133 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
48 chpge0 27088 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
49483ad2ant2 1134 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑦))
50363ad2ant2 1134 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℝ)
51 addge02 11748 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (ψ‘𝑦) ∈ ℝ) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5242, 50, 51sylancr 587 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5349, 52mpbid 232 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ≤ ((ψ‘𝑦) + 1))
54 suble0 11751 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5542, 43, 54sylancr 587 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5653, 55mpbird 257 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ 0)
5783ad2ant1 1133 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ∈ ℝ)
5863ad2ant1 1133 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
59 chpge0 27088 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
6058, 59syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑥))
61 rpregt0 13023 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62613ad2ant1 1133 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 divge0 12111 . . . . . . . . . 10 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6457, 60, 62, 63syl21anc 837 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6545, 46, 47, 56, 64letrd 11392 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥))
66 2re 12314 . . . . . . . . . . 11 2 ∈ ℝ
67 readdcl 11212 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((ψ‘𝑦) + 2) ∈ ℝ)
6850, 66, 67sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) ∈ ℝ)
69 1red 11236 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℝ)
7058adantr 480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ∈ ℝ)
71 1red 11236 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 ∈ ℝ)
7266a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 2 ∈ ℝ)
73 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ≤ 1)
74 1lt2 12411 . . . . . . . . . . . . . . . 16 1 < 2
7574a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 < 2)
7670, 71, 72, 73, 75lelttrd 11393 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 < 2)
77 chpeq0 27171 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7870, 77syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7976, 78mpbird 257 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (ψ‘𝑥) = 0)
8079oveq1d 7420 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥))
81 simp1 1136 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ+)
8281rpcnne0d 13060 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
83 div0 11929 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (0 / 𝑥) = 0)
8482, 83syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) = 0)
8584, 49eqbrtrd 5141 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) ≤ (ψ‘𝑦))
8685adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (0 / 𝑥) ≤ (ψ‘𝑦))
8780, 86eqbrtrd 5141 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
8847adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
8957adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ)
9050adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑦) ∈ ℝ)
91 0lt1 11759 . . . . . . . . . . . . . . . 16 0 < 1
9291a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < 1)
93 lediv2a 12136 . . . . . . . . . . . . . . . 16 ((((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9493ex 412 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9569, 92, 62, 57, 60, 94syl212anc 1382 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9695imp 406 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9789recnd 11263 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℂ)
9897div1d 12009 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 1) = (ψ‘𝑥))
9996, 98breqtrd 5145 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑥))
100 simp2 1137 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
101 ltle 11323 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1026, 101sylan 580 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1031023impia 1117 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥𝑦)
104 chpwordi 27119 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10558, 100, 103, 104syl3anc 1373 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
106105adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10788, 89, 90, 99, 106letrd 11392 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
10858, 69, 87, 107lecasei 11341 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
109 2nn0 12518 . . . . . . . . . . 11 2 ∈ ℕ0
110 nn0addge1 12547 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℕ0) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11150, 109, 110sylancl 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11247, 50, 68, 108, 111letrd 11392 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) + 2))
113 df-2 12303 . . . . . . . . . . 11 2 = (1 + 1)
114113oveq2i 7416 . . . . . . . . . 10 ((ψ‘𝑦) + 2) = ((ψ‘𝑦) + (1 + 1))
11550recnd 11263 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℂ)
11630a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℂ)
117115, 116, 116add12d 11462 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + (1 + 1)) = (1 + ((ψ‘𝑦) + 1)))
118114, 117eqtrid 2782 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) = (1 + ((ψ‘𝑦) + 1)))
119112, 118breqtrd 5145 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))
12047, 69, 43absdifled 15453 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1) ↔ ((1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥) ∧ ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))))
12165, 119, 120mpbir2and 713 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1))
12241, 121eqbrtrd 5141 . . . . . 6 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1231223expb 1120 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
124123adantrlr 723 . . . 4 ((𝑥 ∈ ℝ+ ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
125124adantll 714 . . 3 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1262, 3, 14, 35, 39, 125o1bddrp 15558 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐)
127126mptru 1547 1 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2108  wne 2932  wral 3051  wrex 3060  wss 3926   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  0cn0 12501  +crp 13008  abscabs 15253  𝑂(1)co1 15502  ψcchp 27055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-o1 15506  df-lo1 15507  df-sum 15703  df-ef 16083  df-e 16084  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518  df-cht 27059  df-vma 27060  df-chp 27061  df-ppi 27062
This theorem is referenced by:  pntrlog2bnd  27547  pntibnd  27556  pnt3  27575
  Copyright terms: Public domain W3C validator