MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrmax Structured version   Visualization version   GIF version

Theorem pntrmax 26617
Description: There is a bound on the residual valid for all 𝑥. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrmax 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Distinct variable groups:   𝑥,𝑎   𝑥,𝑐,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrmax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpssre 12666 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 1red 10907 . . 3 (⊤ → 1 ∈ ℝ)
4 pntrval.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
54pntrval 26615 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
6 rpre 12667 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7 chpcl 26178 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
86, 7syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
98, 6resubcld 11333 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) − 𝑥) ∈ ℝ)
105, 9eqeltrd 2839 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
11 rerpdivcl 12689 . . . . . 6 (((𝑅𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1210, 11mpancom 684 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1312recnd 10934 . . . 4 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℂ)
1413adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℂ)
155oveq1d 7270 . . . . . 6 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
168recnd 10934 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
17 rpcn 12669 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
18 rpne0 12675 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1916, 17, 17, 18divsubdird 11720 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
2017, 18dividd 11679 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 𝑥) = 1)
2120oveq2d 7271 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
2215, 19, 213eqtrd 2782 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
2322mpteq2ia 5173 . . . 4 (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1))
24 rerpdivcl 12689 . . . . . . 7 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258, 24mpancom 684 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
2625adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
27 1red 10907 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
28 chpo1ub 26533 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
2928a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
30 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
31 o1const 15257 . . . . . . 7 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
321, 30, 31mp2an 688 . . . . . 6 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
3426, 27, 29, 33o1sub2 15263 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1)) ∈ 𝑂(1))
3523, 34eqeltrid 2843 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) ∈ 𝑂(1))
36 chpcl 26178 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
37 peano2re 11078 . . . . 5 ((ψ‘𝑦) ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3836, 37syl 17 . . . 4 (𝑦 ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3938ad2antrl 724 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 1) ∈ ℝ)
40223ad2ant1 1131 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
4140fveq2d 6760 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘(((ψ‘𝑥) / 𝑥) − 1)))
42 1re 10906 . . . . . . . . . 10 1 ∈ ℝ
43383ad2ant2 1132 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 1) ∈ ℝ)
44 resubcl 11215 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
4542, 43, 44sylancr 586 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
46 0red 10909 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
47253ad2ant1 1131 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
48 chpge0 26180 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
49483ad2ant2 1132 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑦))
50363ad2ant2 1132 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℝ)
51 addge02 11416 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (ψ‘𝑦) ∈ ℝ) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5242, 50, 51sylancr 586 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5349, 52mpbid 231 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ≤ ((ψ‘𝑦) + 1))
54 suble0 11419 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5542, 43, 54sylancr 586 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5653, 55mpbird 256 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ 0)
5783ad2ant1 1131 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ∈ ℝ)
5863ad2ant1 1131 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
59 chpge0 26180 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
6058, 59syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑥))
61 rpregt0 12673 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62613ad2ant1 1131 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 divge0 11774 . . . . . . . . . 10 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6457, 60, 62, 63syl21anc 834 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6545, 46, 47, 56, 64letrd 11062 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥))
66 2re 11977 . . . . . . . . . . 11 2 ∈ ℝ
67 readdcl 10885 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((ψ‘𝑦) + 2) ∈ ℝ)
6850, 66, 67sylancl 585 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) ∈ ℝ)
69 1red 10907 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℝ)
7058adantr 480 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ∈ ℝ)
71 1red 10907 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 ∈ ℝ)
7266a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 2 ∈ ℝ)
73 simpr 484 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ≤ 1)
74 1lt2 12074 . . . . . . . . . . . . . . . 16 1 < 2
7574a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 < 2)
7670, 71, 72, 73, 75lelttrd 11063 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 < 2)
77 chpeq0 26261 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7870, 77syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7976, 78mpbird 256 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (ψ‘𝑥) = 0)
8079oveq1d 7270 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥))
81 simp1 1134 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ+)
8281rpcnne0d 12710 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
83 div0 11593 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (0 / 𝑥) = 0)
8482, 83syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) = 0)
8584, 49eqbrtrd 5092 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) ≤ (ψ‘𝑦))
8685adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (0 / 𝑥) ≤ (ψ‘𝑦))
8780, 86eqbrtrd 5092 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
8847adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
8957adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ)
9050adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑦) ∈ ℝ)
91 0lt1 11427 . . . . . . . . . . . . . . . 16 0 < 1
9291a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < 1)
93 lediv2a 11799 . . . . . . . . . . . . . . . 16 ((((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9493ex 412 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9569, 92, 62, 57, 60, 94syl212anc 1378 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9695imp 406 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9789recnd 10934 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℂ)
9897div1d 11673 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 1) = (ψ‘𝑥))
9996, 98breqtrd 5096 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑥))
100 simp2 1135 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
101 ltle 10994 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1026, 101sylan 579 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1031023impia 1115 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥𝑦)
104 chpwordi 26211 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10558, 100, 103, 104syl3anc 1369 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
106105adantr 480 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10788, 89, 90, 99, 106letrd 11062 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
10858, 69, 87, 107lecasei 11011 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
109 2nn0 12180 . . . . . . . . . . 11 2 ∈ ℕ0
110 nn0addge1 12209 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℕ0) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11150, 109, 110sylancl 585 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11247, 50, 68, 108, 111letrd 11062 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) + 2))
113 df-2 11966 . . . . . . . . . . 11 2 = (1 + 1)
114113oveq2i 7266 . . . . . . . . . 10 ((ψ‘𝑦) + 2) = ((ψ‘𝑦) + (1 + 1))
11550recnd 10934 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℂ)
11630a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℂ)
117115, 116, 116add12d 11131 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + (1 + 1)) = (1 + ((ψ‘𝑦) + 1)))
118114, 117syl5eq 2791 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) = (1 + ((ψ‘𝑦) + 1)))
119112, 118breqtrd 5096 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))
12047, 69, 43absdifled 15074 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1) ↔ ((1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥) ∧ ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))))
12165, 119, 120mpbir2and 709 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1))
12241, 121eqbrtrd 5092 . . . . . 6 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1231223expb 1118 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
124123adantrlr 719 . . . 4 ((𝑥 ∈ ℝ+ ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
125124adantll 710 . . 3 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1262, 3, 14, 35, 39, 125o1bddrp 15179 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐)
127126mptru 1546 1 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  0cn0 12163  +crp 12659  abscabs 14873  𝑂(1)co1 15123  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-cht 26151  df-vma 26152  df-chp 26153  df-ppi 26154
This theorem is referenced by:  pntrlog2bnd  26637  pntibnd  26646  pnt3  26665
  Copyright terms: Public domain W3C validator