Step | Hyp | Ref
| Expression |
1 | | rpssre 12746 |
. . . 4
⊢
ℝ+ ⊆ ℝ |
2 | 1 | a1i 11 |
. . 3
⊢ (⊤
→ ℝ+ ⊆ ℝ) |
3 | | 1red 10985 |
. . 3
⊢ (⊤
→ 1 ∈ ℝ) |
4 | | pntrval.r |
. . . . . . . 8
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
5 | 4 | pntrval 26719 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) = ((ψ‘𝑥) − 𝑥)) |
6 | | rpre 12747 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
7 | | chpcl 26282 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ →
(ψ‘𝑥) ∈
ℝ) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℝ) |
9 | 8, 6 | resubcld 11412 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥)
− 𝑥) ∈
ℝ) |
10 | 5, 9 | eqeltrd 2840 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
11 | | rerpdivcl 12769 |
. . . . . 6
⊢ (((𝑅‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((𝑅‘𝑥) / 𝑥) ∈ ℝ) |
12 | 10, 11 | mpancom 685 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) / 𝑥) ∈ ℝ) |
13 | 12 | recnd 11012 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) / 𝑥) ∈ ℂ) |
14 | 13 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((𝑅‘𝑥) / 𝑥) ∈ ℂ) |
15 | 5 | oveq1d 7299 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥)) |
16 | 8 | recnd 11012 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (ψ‘𝑥)
∈ ℂ) |
17 | | rpcn 12749 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
18 | | rpne0 12755 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
19 | 16, 17, 17, 18 | divsubdird 11799 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((ψ‘𝑥)
− 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥))) |
20 | 17, 18 | dividd 11758 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 / 𝑥) = 1) |
21 | 20 | oveq2d 7300 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ (((ψ‘𝑥) /
𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1)) |
22 | 15, 19, 21 | 3eqtrd 2783 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
→ ((𝑅‘𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1)) |
23 | 22 | mpteq2ia 5178 |
. . . 4
⊢ (𝑥 ∈ ℝ+
↦ ((𝑅‘𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
(((ψ‘𝑥) / 𝑥) − 1)) |
24 | | rerpdivcl 12769 |
. . . . . . 7
⊢
(((ψ‘𝑥)
∈ ℝ ∧ 𝑥
∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
25 | 8, 24 | mpancom 685 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ ((ψ‘𝑥) /
𝑥) ∈
ℝ) |
26 | 25 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
27 | | 1red 10985 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℝ+) → 1 ∈ ℝ) |
28 | | chpo1ub 26637 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ ((ψ‘𝑥) /
𝑥)) ∈
𝑂(1) |
29 | 28 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
30 | | ax-1cn 10938 |
. . . . . . 7
⊢ 1 ∈
ℂ |
31 | | o1const 15338 |
. . . . . . 7
⊢
((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ 1) ∈ 𝑂(1)) |
32 | 1, 30, 31 | mp2an 689 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ 1) ∈ 𝑂(1) |
33 | 32 | a1i 11 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ 1) ∈ 𝑂(1)) |
34 | 26, 27, 29, 33 | o1sub2 15344 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1)) ∈
𝑂(1)) |
35 | 23, 34 | eqeltrid 2844 |
. . 3
⊢ (⊤
→ (𝑥 ∈
ℝ+ ↦ ((𝑅‘𝑥) / 𝑥)) ∈ 𝑂(1)) |
36 | | chpcl 26282 |
. . . . 5
⊢ (𝑦 ∈ ℝ →
(ψ‘𝑦) ∈
ℝ) |
37 | | peano2re 11157 |
. . . . 5
⊢
((ψ‘𝑦)
∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ) |
38 | 36, 37 | syl 17 |
. . . 4
⊢ (𝑦 ∈ ℝ →
((ψ‘𝑦) + 1)
∈ ℝ) |
39 | 38 | ad2antrl 725 |
. . 3
⊢
((⊤ ∧ (𝑦
∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 1) ∈ ℝ) |
40 | 22 | 3ad2ant1 1132 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((𝑅‘𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1)) |
41 | 40 | fveq2d 6787 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (abs‘((𝑅‘𝑥) / 𝑥)) = (abs‘(((ψ‘𝑥) / 𝑥) − 1))) |
42 | | 1re 10984 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
43 | 38 | 3ad2ant2 1133 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 1) ∈
ℝ) |
44 | | resubcl 11294 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → (1 −
((ψ‘𝑦) + 1))
∈ ℝ) |
45 | 42, 43, 44 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (1 −
((ψ‘𝑦) + 1))
∈ ℝ) |
46 | | 0red 10987 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 0 ∈
ℝ) |
47 | 25 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
48 | | chpge0 26284 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ → 0 ≤
(ψ‘𝑦)) |
49 | 48 | 3ad2ant2 1133 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 0 ≤
(ψ‘𝑦)) |
50 | 36 | 3ad2ant2 1133 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈
ℝ) |
51 | | addge02 11495 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℝ ∧ (ψ‘𝑦) ∈ ℝ) → (0 ≤
(ψ‘𝑦) ↔ 1
≤ ((ψ‘𝑦) +
1))) |
52 | 42, 50, 51 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (0 ≤
(ψ‘𝑦) ↔ 1
≤ ((ψ‘𝑦) +
1))) |
53 | 49, 52 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 1 ≤
((ψ‘𝑦) +
1)) |
54 | | suble0 11498 |
. . . . . . . . . . 11
⊢ ((1
∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → ((1 −
((ψ‘𝑦) + 1)) ≤
0 ↔ 1 ≤ ((ψ‘𝑦) + 1))) |
55 | 42, 43, 54 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((1 −
((ψ‘𝑦) + 1)) ≤
0 ↔ 1 ≤ ((ψ‘𝑦) + 1))) |
56 | 53, 55 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (1 −
((ψ‘𝑦) + 1)) ≤
0) |
57 | 8 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (ψ‘𝑥) ∈
ℝ) |
58 | 6 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) |
59 | | chpge0 26284 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → 0 ≤
(ψ‘𝑥)) |
60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 0 ≤
(ψ‘𝑥)) |
61 | | rpregt0 12753 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
62 | 61 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 < 𝑥)) |
63 | | divge0 11853 |
. . . . . . . . . 10
⊢
((((ψ‘𝑥)
∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤
((ψ‘𝑥) / 𝑥)) |
64 | 57, 60, 62, 63 | syl21anc 835 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 0 ≤
((ψ‘𝑥) / 𝑥)) |
65 | 45, 46, 47, 56, 64 | letrd 11141 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (1 −
((ψ‘𝑦) + 1)) ≤
((ψ‘𝑥) / 𝑥)) |
66 | | 2re 12056 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
67 | | readdcl 10963 |
. . . . . . . . . . 11
⊢
(((ψ‘𝑦)
∈ ℝ ∧ 2 ∈ ℝ) → ((ψ‘𝑦) + 2) ∈ ℝ) |
68 | 50, 66, 67 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) ∈
ℝ) |
69 | | 1red 10985 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 1 ∈
ℝ) |
70 | 58 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ∈ ℝ) |
71 | | 1red 10985 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 ∈
ℝ) |
72 | 66 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 2 ∈
ℝ) |
73 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ≤ 1) |
74 | | 1lt2 12153 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
2 |
75 | 74 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 < 2) |
76 | 70, 71, 72, 73, 75 | lelttrd 11142 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 < 2) |
77 | | chpeq0 26365 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ →
((ψ‘𝑥) = 0 ↔
𝑥 < 2)) |
78 | 70, 77 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2)) |
79 | 76, 78 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (ψ‘𝑥) = 0) |
80 | 79 | oveq1d 7299 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥)) |
81 | | simp1 1135 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ+) |
82 | 81 | rpcnne0d 12790 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
83 | | div0 11672 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (0 / 𝑥) = 0) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (0 / 𝑥) = 0) |
85 | 84, 49 | eqbrtrd 5097 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (0 / 𝑥) ≤ (ψ‘𝑦)) |
86 | 85 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (0 / 𝑥) ≤ (ψ‘𝑦)) |
87 | 80, 86 | eqbrtrd 5097 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦)) |
88 | 47 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ∈ ℝ) |
89 | 57 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈
ℝ) |
90 | 50 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑦) ∈
ℝ) |
91 | | 0lt1 11506 |
. . . . . . . . . . . . . . . 16
⊢ 0 <
1 |
92 | 91 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 0 <
1) |
93 | | lediv2a 11878 |
. . . . . . . . . . . . . . . 16
⊢ ((((1
∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤
(ψ‘𝑥))) ∧ 1
≤ 𝑥) →
((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)) |
94 | 93 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (((1
∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤
(ψ‘𝑥))) → (1
≤ 𝑥 →
((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))) |
95 | 69, 92, 62, 57, 60, 94 | syl212anc 1379 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))) |
96 | 95 | imp 407 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)) |
97 | 89 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈
ℂ) |
98 | 97 | div1d 11752 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 1) = (ψ‘𝑥)) |
99 | 96, 98 | breqtrd 5101 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑥)) |
100 | | simp2 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) |
101 | | ltle 11072 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → 𝑥 ≤ 𝑦)) |
102 | 6, 101 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ)
→ (𝑥 < 𝑦 → 𝑥 ≤ 𝑦)) |
103 | 102 | 3impia 1116 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 𝑥 ≤ 𝑦) |
104 | | chpwordi 26315 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦)) |
105 | 58, 100, 103, 104 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦)) |
106 | 105 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦)) |
107 | 88, 89, 90, 99, 106 | letrd 11141 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦)) |
108 | 58, 69, 87, 107 | lecasei 11090 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦)) |
109 | | 2nn0 12259 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ0 |
110 | | nn0addge1 12288 |
. . . . . . . . . . 11
⊢
(((ψ‘𝑦)
∈ ℝ ∧ 2 ∈ ℕ0) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2)) |
111 | 50, 109, 110 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2)) |
112 | 47, 50, 68, 108, 111 | letrd 11141 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) + 2)) |
113 | | df-2 12045 |
. . . . . . . . . . 11
⊢ 2 = (1 +
1) |
114 | 113 | oveq2i 7295 |
. . . . . . . . . 10
⊢
((ψ‘𝑦) +
2) = ((ψ‘𝑦) + (1
+ 1)) |
115 | 50 | recnd 11012 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈
ℂ) |
116 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → 1 ∈
ℂ) |
117 | 115, 116,
116 | add12d 11210 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + (1 + 1)) = (1 +
((ψ‘𝑦) +
1))) |
118 | 114, 117 | eqtrid 2791 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) = (1 +
((ψ‘𝑦) +
1))) |
119 | 112, 118 | breqtrd 5101 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1))) |
120 | 47, 69, 43 | absdifled 15155 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) →
((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1) ↔ ((1 −
((ψ‘𝑦) + 1)) ≤
((ψ‘𝑥) / 𝑥) ∧ ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1))))) |
121 | 65, 119, 120 | mpbir2and 710 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) →
(abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1)) |
122 | 41, 121 | eqbrtrd 5097 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈ ℝ
∧ 𝑥 < 𝑦) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1)) |
123 | 122 | 3expb 1119 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
∧ (𝑦 ∈ ℝ
∧ 𝑥 < 𝑦)) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1)) |
124 | 123 | adantrlr 720 |
. . . 4
⊢ ((𝑥 ∈ ℝ+
∧ ((𝑦 ∈ ℝ
∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1)) |
125 | 124 | adantll 711 |
. . 3
⊢
(((⊤ ∧ 𝑥
∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅‘𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1)) |
126 | 2, 3, 14, 35, 39, 125 | o1bddrp 15260 |
. 2
⊢ (⊤
→ ∃𝑐 ∈
ℝ+ ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑐) |
127 | 126 | mptru 1546 |
1
⊢
∃𝑐 ∈
ℝ+ ∀𝑥 ∈ ℝ+
(abs‘((𝑅‘𝑥) / 𝑥)) ≤ 𝑐 |