MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrmax Structured version   Visualization version   GIF version

Theorem pntrmax 26928
Description: There is a bound on the residual valid for all 𝑥. (Contributed by Mario Carneiro, 9-Apr-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrmax 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Distinct variable groups:   𝑥,𝑎   𝑥,𝑐,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrmax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpssre 12927 . . . 4 + ⊆ ℝ
21a1i 11 . . 3 (⊤ → ℝ+ ⊆ ℝ)
3 1red 11161 . . 3 (⊤ → 1 ∈ ℝ)
4 pntrval.r . . . . . . . 8 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
54pntrval 26926 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑅𝑥) = ((ψ‘𝑥) − 𝑥))
6 rpre 12928 . . . . . . . . 9 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
7 chpcl 26489 . . . . . . . . 9 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
86, 7syl 17 . . . . . . . 8 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℝ)
98, 6resubcld 11588 . . . . . . 7 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) − 𝑥) ∈ ℝ)
105, 9eqeltrd 2834 . . . . . 6 (𝑥 ∈ ℝ+ → (𝑅𝑥) ∈ ℝ)
11 rerpdivcl 12950 . . . . . 6 (((𝑅𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1210, 11mpancom 687 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℝ)
1312recnd 11188 . . . 4 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) ∈ ℂ)
1413adantl 483 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑅𝑥) / 𝑥) ∈ ℂ)
155oveq1d 7373 . . . . . 6 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) − 𝑥) / 𝑥))
168recnd 11188 . . . . . . 7 (𝑥 ∈ ℝ+ → (ψ‘𝑥) ∈ ℂ)
17 rpcn 12930 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
18 rpne0 12936 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ≠ 0)
1916, 17, 17, 18divsubdird 11975 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) − 𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)))
2017, 18dividd 11934 . . . . . . 7 (𝑥 ∈ ℝ+ → (𝑥 / 𝑥) = 1)
2120oveq2d 7374 . . . . . 6 (𝑥 ∈ ℝ+ → (((ψ‘𝑥) / 𝑥) − (𝑥 / 𝑥)) = (((ψ‘𝑥) / 𝑥) − 1))
2215, 19, 213eqtrd 2777 . . . . 5 (𝑥 ∈ ℝ+ → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
2322mpteq2ia 5209 . . . 4 (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) = (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1))
24 rerpdivcl 12950 . . . . . . 7 (((ψ‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
258, 24mpancom 687 . . . . . 6 (𝑥 ∈ ℝ+ → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
2625adantl 483 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
27 1red 11161 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
28 chpo1ub 26844 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1)
2928a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((ψ‘𝑥) / 𝑥)) ∈ 𝑂(1))
30 ax-1cn 11114 . . . . . . 7 1 ∈ ℂ
31 o1const 15508 . . . . . . 7 ((ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
321, 30, 31mp2an 691 . . . . . 6 (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1)
3332a1i 11 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ 1) ∈ 𝑂(1))
3426, 27, 29, 33o1sub2 15514 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (((ψ‘𝑥) / 𝑥) − 1)) ∈ 𝑂(1))
3523, 34eqeltrid 2838 . . 3 (⊤ → (𝑥 ∈ ℝ+ ↦ ((𝑅𝑥) / 𝑥)) ∈ 𝑂(1))
36 chpcl 26489 . . . . 5 (𝑦 ∈ ℝ → (ψ‘𝑦) ∈ ℝ)
37 peano2re 11333 . . . . 5 ((ψ‘𝑦) ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3836, 37syl 17 . . . 4 (𝑦 ∈ ℝ → ((ψ‘𝑦) + 1) ∈ ℝ)
3938ad2antrl 727 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ ∧ 1 ≤ 𝑦)) → ((ψ‘𝑦) + 1) ∈ ℝ)
40223ad2ant1 1134 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((𝑅𝑥) / 𝑥) = (((ψ‘𝑥) / 𝑥) − 1))
4140fveq2d 6847 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) = (abs‘(((ψ‘𝑥) / 𝑥) − 1)))
42 1re 11160 . . . . . . . . . 10 1 ∈ ℝ
43383ad2ant2 1135 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 1) ∈ ℝ)
44 resubcl 11470 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
4542, 43, 44sylancr 588 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ∈ ℝ)
46 0red 11163 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ∈ ℝ)
47253ad2ant1 1134 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
48 chpge0 26491 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 0 ≤ (ψ‘𝑦))
49483ad2ant2 1135 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑦))
50363ad2ant2 1135 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℝ)
51 addge02 11671 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (ψ‘𝑦) ∈ ℝ) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5242, 50, 51sylancr 588 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 ≤ (ψ‘𝑦) ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5349, 52mpbid 231 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ≤ ((ψ‘𝑦) + 1))
54 suble0 11674 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ ((ψ‘𝑦) + 1) ∈ ℝ) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5542, 43, 54sylancr 588 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((1 − ((ψ‘𝑦) + 1)) ≤ 0 ↔ 1 ≤ ((ψ‘𝑦) + 1)))
5653, 55mpbird 257 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ 0)
5783ad2ant1 1134 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ∈ ℝ)
5863ad2ant1 1134 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
59 chpge0 26491 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 0 ≤ (ψ‘𝑥))
6058, 59syl 17 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ (ψ‘𝑥))
61 rpregt0 12934 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
62613ad2ant1 1134 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
63 divge0 12029 . . . . . . . . . 10 ((((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥)) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6457, 60, 62, 63syl21anc 837 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 ≤ ((ψ‘𝑥) / 𝑥))
6545, 46, 47, 56, 64letrd 11317 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥))
66 2re 12232 . . . . . . . . . . 11 2 ∈ ℝ
67 readdcl 11139 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((ψ‘𝑦) + 2) ∈ ℝ)
6850, 66, 67sylancl 587 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) ∈ ℝ)
69 1red 11161 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℝ)
7058adantr 482 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ∈ ℝ)
71 1red 11161 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 ∈ ℝ)
7266a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 2 ∈ ℝ)
73 simpr 486 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 ≤ 1)
74 1lt2 12329 . . . . . . . . . . . . . . . 16 1 < 2
7574a1i 11 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 1 < 2)
7670, 71, 72, 73, 75lelttrd 11318 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → 𝑥 < 2)
77 chpeq0 26572 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7870, 77syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) = 0 ↔ 𝑥 < 2))
7976, 78mpbird 257 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (ψ‘𝑥) = 0)
8079oveq1d 7373 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) = (0 / 𝑥))
81 simp1 1137 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ+)
8281rpcnne0d 12971 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
83 div0 11848 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (0 / 𝑥) = 0)
8482, 83syl 17 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) = 0)
8584, 49eqbrtrd 5128 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (0 / 𝑥) ≤ (ψ‘𝑦))
8685adantr 482 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → (0 / 𝑥) ≤ (ψ‘𝑦))
8780, 86eqbrtrd 5128 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 𝑥 ≤ 1) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
8847adantr 482 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ∈ ℝ)
8957adantr 482 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℝ)
9050adantr 482 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑦) ∈ ℝ)
91 0lt1 11682 . . . . . . . . . . . . . . . 16 0 < 1
9291a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < 1)
93 lediv2a 12054 . . . . . . . . . . . . . . . 16 ((((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9493ex 414 . . . . . . . . . . . . . . 15 (((1 ∈ ℝ ∧ 0 < 1) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ ((ψ‘𝑥) ∈ ℝ ∧ 0 ≤ (ψ‘𝑥))) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9569, 92, 62, 57, 60, 94syl212anc 1381 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 ≤ 𝑥 → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1)))
9695imp 408 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑥) / 1))
9789recnd 11188 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ∈ ℂ)
9897div1d 11928 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 1) = (ψ‘𝑥))
9996, 98breqtrd 5132 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑥))
100 simp2 1138 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
101 ltle 11248 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1026, 101sylan 581 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑥𝑦))
1031023impia 1118 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥𝑦)
104 chpwordi 26522 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10558, 100, 103, 104syl3anc 1372 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑥) ≤ (ψ‘𝑦))
106105adantr 482 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ (ψ‘𝑦))
10788, 89, 90, 99, 106letrd 11317 . . . . . . . . . . 11 (((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ∧ 1 ≤ 𝑥) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
10858, 69, 87, 107lecasei 11266 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (ψ‘𝑦))
109 2nn0 12435 . . . . . . . . . . 11 2 ∈ ℕ0
110 nn0addge1 12464 . . . . . . . . . . 11 (((ψ‘𝑦) ∈ ℝ ∧ 2 ∈ ℕ0) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11150, 109, 110sylancl 587 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ≤ ((ψ‘𝑦) + 2))
11247, 50, 68, 108, 111letrd 11317 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ ((ψ‘𝑦) + 2))
113 df-2 12221 . . . . . . . . . . 11 2 = (1 + 1)
114113oveq2i 7369 . . . . . . . . . 10 ((ψ‘𝑦) + 2) = ((ψ‘𝑦) + (1 + 1))
11550recnd 11188 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (ψ‘𝑦) ∈ ℂ)
11630a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 ∈ ℂ)
117115, 116, 116add12d 11386 . . . . . . . . . 10 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + (1 + 1)) = (1 + ((ψ‘𝑦) + 1)))
118114, 117eqtrid 2785 . . . . . . . . 9 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑦) + 2) = (1 + ((ψ‘𝑦) + 1)))
119112, 118breqtrd 5132 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))
12047, 69, 43absdifled 15325 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1) ↔ ((1 − ((ψ‘𝑦) + 1)) ≤ ((ψ‘𝑥) / 𝑥) ∧ ((ψ‘𝑥) / 𝑥) ≤ (1 + ((ψ‘𝑦) + 1)))))
12165, 119, 120mpbir2and 712 . . . . . . 7 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘(((ψ‘𝑥) / 𝑥) − 1)) ≤ ((ψ‘𝑦) + 1))
12241, 121eqbrtrd 5128 . . . . . 6 ((𝑥 ∈ ℝ+𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1231223expb 1121 . . . . 5 ((𝑥 ∈ ℝ+ ∧ (𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
124123adantrlr 722 . . . 4 ((𝑥 ∈ ℝ+ ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
125124adantll 713 . . 3 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ ((𝑦 ∈ ℝ ∧ 1 ≤ 𝑦) ∧ 𝑥 < 𝑦)) → (abs‘((𝑅𝑥) / 𝑥)) ≤ ((ψ‘𝑦) + 1))
1262, 3, 14, 35, 39, 125o1bddrp 15430 . 2 (⊤ → ∃𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐)
127126mptru 1549 1 𝑐 ∈ ℝ+𝑥 ∈ ℝ+ (abs‘((𝑅𝑥) / 𝑥)) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wtru 1543  wcel 2107  wne 2940  wral 3061  wrex 3070  wss 3911   class class class wbr 5106  cmpt 5189  cfv 6497  (class class class)co 7358  cc 11054  cr 11055  0cc0 11056  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cmin 11390   / cdiv 11817  2c2 12213  0cn0 12418  +crp 12920  abscabs 15125  𝑂(1)co1 15374  ψcchp 26458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134  ax-addf 11135  ax-mulf 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-oadd 8417  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-fi 9352  df-sup 9383  df-inf 9384  df-oi 9451  df-dju 9842  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-xnn0 12491  df-z 12505  df-dec 12624  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-ioo 13274  df-ioc 13275  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-fl 13703  df-mod 13781  df-seq 13913  df-exp 13974  df-fac 14180  df-bc 14209  df-hash 14237  df-shft 14958  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-limsup 15359  df-clim 15376  df-rlim 15377  df-o1 15378  df-lo1 15379  df-sum 15577  df-ef 15955  df-e 15956  df-sin 15957  df-cos 15958  df-pi 15960  df-dvds 16142  df-gcd 16380  df-prm 16553  df-pc 16714  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-starv 17153  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-unif 17161  df-hom 17162  df-cco 17163  df-rest 17309  df-topn 17310  df-0g 17328  df-gsum 17329  df-topgen 17330  df-pt 17331  df-prds 17334  df-xrs 17389  df-qtop 17394  df-imas 17395  df-xps 17397  df-mre 17471  df-mrc 17472  df-acs 17474  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-mulg 18878  df-cntz 19102  df-cmn 19569  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928  df-cxp 25929  df-cht 26462  df-vma 26463  df-chp 26464  df-ppi 26465
This theorem is referenced by:  pntrlog2bnd  26948  pntibnd  26957  pnt3  26976
  Copyright terms: Public domain W3C validator