| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl211anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl212anc 1382 syl221anc 1383 frrlem15 9657 supicc 13403 modaddmulmod 13847 limsupgre 15390 limsupbnd1 15391 limsupbnd2 15392 lbspss 21018 lindff1 21759 islinds4 21774 mdetunilem9 22536 madutpos 22558 neiptopnei 23048 mbflimsup 25595 cxpneg 26618 cxpmul2 26626 cxpsqrt 26640 cxpaddd 26654 cxpsubd 26655 divcxpd 26659 fsumharmonic 26950 bposlem1 27223 lgsqr 27290 chpchtlim 27418 sltmul2d 28112 ax5seg 28918 archiabllem2c 33171 qsidomlem2 33425 dimlssid 33666 logdivsqrle 34684 lindsadd 37674 lshpnelb 39104 cdlemg2fv2 40720 cdlemg2m 40724 cdlemg9a 40752 cdlemg9b 40753 cdlemg12b 40764 cdlemg14f 40773 cdlemg14g 40774 cdlemg17dN 40783 cdlemkj 40983 cdlemkuv2 40987 cdlemk52 41074 cdlemk53a 41075 mullimc 45741 mullimcf 45748 sfprmdvdsmersenne 47728 lincfsuppcl 48539 |
| Copyright terms: Public domain | W3C validator |