| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl211anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl212anc 1382 syl221anc 1383 frrlem15 9647 supicc 13398 modaddmulmod 13842 limsupgre 15385 limsupbnd1 15386 limsupbnd2 15387 lbspss 21014 lindff1 21755 islinds4 21770 mdetunilem9 22533 madutpos 22555 neiptopnei 23045 mbflimsup 25592 cxpneg 26615 cxpmul2 26623 cxpsqrt 26637 cxpaddd 26651 cxpsubd 26652 divcxpd 26656 fsumharmonic 26947 bposlem1 27220 lgsqr 27287 chpchtlim 27415 sltmul2d 28109 ax5seg 28914 archiabllem2c 33159 qsidomlem2 33413 dimlssid 33640 logdivsqrle 34658 lindsadd 37652 lshpnelb 39022 cdlemg2fv2 40638 cdlemg2m 40642 cdlemg9a 40670 cdlemg9b 40671 cdlemg12b 40682 cdlemg14f 40691 cdlemg14g 40692 cdlemg17dN 40701 cdlemkj 40901 cdlemkuv2 40905 cdlemk52 40992 cdlemk53a 40993 mullimc 45655 mullimcf 45662 sfprmdvdsmersenne 47633 lincfsuppcl 48444 |
| Copyright terms: Public domain | W3C validator |