| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl211anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl212anc 1382 syl221anc 1383 frrlem15 9710 supicc 13462 modaddmulmod 13903 limsupgre 15447 limsupbnd1 15448 limsupbnd2 15449 lbspss 20989 lindff1 21729 islinds4 21744 mdetunilem9 22507 madutpos 22529 neiptopnei 23019 mbflimsup 25567 cxpneg 26590 cxpmul2 26598 cxpsqrt 26612 cxpaddd 26626 cxpsubd 26627 divcxpd 26631 fsumharmonic 26922 bposlem1 27195 lgsqr 27262 chpchtlim 27390 sltmul2d 28075 ax5seg 28865 archiabllem2c 33149 qsidomlem2 33424 dimlssid 33628 logdivsqrle 34641 lindsadd 37607 lshpnelb 38977 cdlemg2fv2 40594 cdlemg2m 40598 cdlemg9a 40626 cdlemg9b 40627 cdlemg12b 40638 cdlemg14f 40647 cdlemg14g 40648 cdlemg17dN 40657 cdlemkj 40857 cdlemkuv2 40861 cdlemk52 40948 cdlemk53a 40949 mullimc 45614 mullimcf 45621 sfprmdvdsmersenne 47604 lincfsuppcl 48402 |
| Copyright terms: Public domain | W3C validator |