Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl211anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: syl212anc 1379 syl221anc 1380 frrlem15 9515 supicc 13233 modaddmulmod 13658 limsupgre 15190 limsupbnd1 15191 limsupbnd2 15192 lbspss 20344 lindff1 21027 islinds4 21042 mdetunilem9 21769 madutpos 21791 neiptopnei 22283 mbflimsup 24830 cxpneg 25836 cxpmul2 25844 cxpsqrt 25858 cxpaddd 25872 cxpsubd 25873 divcxpd 25877 fsumharmonic 26161 bposlem1 26432 lgsqr 26499 chpchtlim 26627 ax5seg 27306 archiabllem2c 31449 qsidomlem2 31629 logdivsqrle 32630 lindsadd 35770 lshpnelb 36998 cdlemg2fv2 38614 cdlemg2m 38618 cdlemg9a 38646 cdlemg9b 38647 cdlemg12b 38658 cdlemg14f 38667 cdlemg14g 38668 cdlemg17dN 38677 cdlemkj 38877 cdlemkuv2 38881 cdlemk52 38968 cdlemk53a 38969 mullimc 43157 mullimcf 43164 sfprmdvdsmersenne 45055 lincfsuppcl 45754 |
Copyright terms: Public domain | W3C validator |