![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl211anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl212anc 1379 syl221anc 1380 frrlem15 9795 supicc 13538 modaddmulmod 13976 limsupgre 15514 limsupbnd1 15515 limsupbnd2 15516 lbspss 21099 lindff1 21858 islinds4 21873 mdetunilem9 22642 madutpos 22664 neiptopnei 23156 mbflimsup 25715 cxpneg 26738 cxpmul2 26746 cxpsqrt 26760 cxpaddd 26774 cxpsubd 26775 divcxpd 26779 fsumharmonic 27070 bposlem1 27343 lgsqr 27410 chpchtlim 27538 sltmul2d 28213 ax5seg 28968 archiabllem2c 33185 qsidomlem2 33461 dimlssid 33660 logdivsqrle 34644 lindsadd 37600 lshpnelb 38966 cdlemg2fv2 40583 cdlemg2m 40587 cdlemg9a 40615 cdlemg9b 40616 cdlemg12b 40627 cdlemg14f 40636 cdlemg14g 40637 cdlemg17dN 40646 cdlemkj 40846 cdlemkuv2 40850 cdlemk52 40937 cdlemk53a 40938 mullimc 45572 mullimcf 45579 sfprmdvdsmersenne 47528 lincfsuppcl 48259 |
Copyright terms: Public domain | W3C validator |