![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl211anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl212anc 1380 syl221anc 1381 frrlem15 9826 supicc 13561 modaddmulmod 13989 limsupgre 15527 limsupbnd1 15528 limsupbnd2 15529 lbspss 21104 lindff1 21863 islinds4 21878 mdetunilem9 22647 madutpos 22669 neiptopnei 23161 mbflimsup 25720 cxpneg 26741 cxpmul2 26749 cxpsqrt 26763 cxpaddd 26777 cxpsubd 26778 divcxpd 26782 fsumharmonic 27073 bposlem1 27346 lgsqr 27413 chpchtlim 27541 sltmul2d 28216 ax5seg 28971 archiabllem2c 33175 qsidomlem2 33446 dimlssid 33645 logdivsqrle 34627 lindsadd 37573 lshpnelb 38940 cdlemg2fv2 40557 cdlemg2m 40561 cdlemg9a 40589 cdlemg9b 40590 cdlemg12b 40601 cdlemg14f 40610 cdlemg14g 40611 cdlemg17dN 40620 cdlemkj 40820 cdlemkuv2 40824 cdlemk52 40911 cdlemk53a 40912 mullimc 45537 mullimcf 45544 sfprmdvdsmersenne 47477 lincfsuppcl 48142 |
Copyright terms: Public domain | W3C validator |