| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl211anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl212anc 1382 syl221anc 1383 frrlem15 9771 supicc 13518 modaddmulmod 13956 limsupgre 15497 limsupbnd1 15498 limsupbnd2 15499 lbspss 21040 lindff1 21780 islinds4 21795 mdetunilem9 22558 madutpos 22580 neiptopnei 23070 mbflimsup 25619 cxpneg 26642 cxpmul2 26650 cxpsqrt 26664 cxpaddd 26678 cxpsubd 26679 divcxpd 26683 fsumharmonic 26974 bposlem1 27247 lgsqr 27314 chpchtlim 27442 sltmul2d 28127 ax5seg 28917 archiabllem2c 33193 qsidomlem2 33468 dimlssid 33672 logdivsqrle 34682 lindsadd 37637 lshpnelb 39002 cdlemg2fv2 40619 cdlemg2m 40623 cdlemg9a 40651 cdlemg9b 40652 cdlemg12b 40663 cdlemg14f 40672 cdlemg14g 40673 cdlemg17dN 40682 cdlemkj 40882 cdlemkuv2 40886 cdlemk52 40973 cdlemk53a 40974 mullimc 45645 mullimcf 45652 sfprmdvdsmersenne 47617 lincfsuppcl 48389 |
| Copyright terms: Public domain | W3C validator |