Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl211anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl212anc 1378 syl221anc 1379 frrlem15 9446 supicc 13162 modaddmulmod 13586 limsupgre 15118 limsupbnd1 15119 limsupbnd2 15120 lbspss 20259 lindff1 20937 islinds4 20952 mdetunilem9 21677 madutpos 21699 neiptopnei 22191 mbflimsup 24735 cxpneg 25741 cxpmul2 25749 cxpsqrt 25763 cxpaddd 25777 cxpsubd 25778 divcxpd 25782 fsumharmonic 26066 bposlem1 26337 lgsqr 26404 chpchtlim 26532 ax5seg 27209 archiabllem2c 31351 qsidomlem2 31531 logdivsqrle 32530 lindsadd 35697 lshpnelb 36925 cdlemg2fv2 38541 cdlemg2m 38545 cdlemg9a 38573 cdlemg9b 38574 cdlemg12b 38585 cdlemg14f 38594 cdlemg14g 38595 cdlemg17dN 38604 cdlemkj 38804 cdlemkuv2 38808 cdlemk52 38895 cdlemk53a 38896 mullimc 43047 mullimcf 43054 sfprmdvdsmersenne 44943 lincfsuppcl 45642 |
Copyright terms: Public domain | W3C validator |