| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl211anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl212anc 1382 syl221anc 1383 frrlem15 9717 supicc 13469 modaddmulmod 13910 limsupgre 15454 limsupbnd1 15455 limsupbnd2 15456 lbspss 20996 lindff1 21736 islinds4 21751 mdetunilem9 22514 madutpos 22536 neiptopnei 23026 mbflimsup 25574 cxpneg 26597 cxpmul2 26605 cxpsqrt 26619 cxpaddd 26633 cxpsubd 26634 divcxpd 26638 fsumharmonic 26929 bposlem1 27202 lgsqr 27269 chpchtlim 27397 sltmul2d 28082 ax5seg 28872 archiabllem2c 33156 qsidomlem2 33431 dimlssid 33635 logdivsqrle 34648 lindsadd 37614 lshpnelb 38984 cdlemg2fv2 40601 cdlemg2m 40605 cdlemg9a 40633 cdlemg9b 40634 cdlemg12b 40645 cdlemg14f 40654 cdlemg14g 40655 cdlemg17dN 40664 cdlemkj 40864 cdlemkuv2 40868 cdlemk52 40955 cdlemk53a 40956 mullimc 45621 mullimcf 45628 sfprmdvdsmersenne 47608 lincfsuppcl 48406 |
| Copyright terms: Public domain | W3C validator |