![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
Ref | Expression |
---|---|
syl211anc | ⊢ (𝜑 → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 504 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
7 | 3, 4, 5, 6 | syl3anc 1351 | 1 ⊢ (𝜑 → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: syl212anc 1360 syl221anc 1361 supicc 12702 modaddmulmod 13121 limsupgre 14699 limsupbnd1 14700 limsupbnd2 14701 lbspss 19576 lindff1 20666 islinds4 20681 mdetunilem9 20933 madutpos 20955 neiptopnei 21444 mbflimsup 23970 cxpneg 24965 cxpmul2 24973 cxpsqrt 24987 cxpaddd 25001 cxpsubd 25002 divcxpd 25006 fsumharmonic 25291 bposlem1 25562 lgsqr 25629 chpchtlim 25757 ax5seg 26427 archiabllem2c 30487 logdivsqrle 31566 frrlem15 32660 lindsadd 34323 lshpnelb 35562 cdlemg2fv2 37178 cdlemg2m 37182 cdlemg9a 37210 cdlemg9b 37211 cdlemg12b 37222 cdlemg14f 37231 cdlemg14g 37232 cdlemg17dN 37241 cdlemkj 37441 cdlemkuv2 37445 cdlemk52 37532 cdlemk53a 37533 mullimc 41326 mullimcf 41333 sfprmdvdsmersenne 43134 lincfsuppcl 43833 |
Copyright terms: Public domain | W3C validator |