| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl211anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl211anc.5 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| syl211anc | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl211anc.5 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜂) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl212anc 1382 syl221anc 1383 frrlem15 9672 supicc 13422 modaddmulmod 13863 limsupgre 15406 limsupbnd1 15407 limsupbnd2 15408 lbspss 21004 lindff1 21745 islinds4 21760 mdetunilem9 22523 madutpos 22545 neiptopnei 23035 mbflimsup 25583 cxpneg 26606 cxpmul2 26614 cxpsqrt 26628 cxpaddd 26642 cxpsubd 26643 divcxpd 26647 fsumharmonic 26938 bposlem1 27211 lgsqr 27278 chpchtlim 27406 sltmul2d 28098 ax5seg 28901 archiabllem2c 33147 qsidomlem2 33400 dimlssid 33604 logdivsqrle 34617 lindsadd 37592 lshpnelb 38962 cdlemg2fv2 40579 cdlemg2m 40583 cdlemg9a 40611 cdlemg9b 40612 cdlemg12b 40623 cdlemg14f 40632 cdlemg14g 40633 cdlemg17dN 40642 cdlemkj 40842 cdlemkuv2 40846 cdlemk52 40933 cdlemk53a 40934 mullimc 45598 mullimcf 45605 sfprmdvdsmersenne 47588 lincfsuppcl 48399 |
| Copyright terms: Public domain | W3C validator |