Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg18c Structured version   Visualization version   GIF version

Theorem cdlemg18c 38380
Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemg18b.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdlemg18c (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹𝑄)) (𝑄 (𝐹𝑃))) ∈ 𝐴)

Proof of Theorem cdlemg18c
StepHypRef Expression
1 simp1l 1199 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝐾 ∈ HL)
2 simp21l 1292 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑃𝐴)
3 simp1r 1200 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑊𝐻)
4 simp21 1208 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simp22l 1294 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑄𝐴)
6 simp31 1211 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑃𝑄)
7 cdlemg12.l . . . 4 = (le‘𝐾)
8 cdlemg12.j . . . 4 = (join‘𝐾)
9 cdlemg12.m . . . 4 = (meet‘𝐾)
10 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
11 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
12 cdlemg18b.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
137, 8, 9, 10, 11, 12cdleme0a 37911 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
141, 3, 4, 5, 6, 13syl212anc 1382 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑈𝐴)
15 simp1 1138 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simp23 1210 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝐹𝑇)
17 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
187, 10, 11, 17ltrnat 37840 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑄𝐴) → (𝐹𝑄) ∈ 𝐴)
1915, 16, 5, 18syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝐹𝑄) ∈ 𝐴)
207, 10, 11, 17ltrnat 37840 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃𝐴) → (𝐹𝑃) ∈ 𝐴)
2115, 16, 2, 20syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝐹𝑃) ∈ 𝐴)
22 cdlemg12b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
237, 8, 9, 10, 11, 17, 22, 12cdlemg18b 38379 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ¬ 𝑃 (𝑈 (𝐹𝑄)))
24 simp32 1212 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝐹𝑃) ≠ 𝑄)
2524necomd 2987 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑄 ≠ (𝐹𝑃))
2623, 25jca 515 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (¬ 𝑃 (𝑈 (𝐹𝑄)) ∧ 𝑄 ≠ (𝐹𝑃)))
27 simp33 1213 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))
287, 8, 9, 10, 11, 17, 22cdlemg18a 38378 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴𝑄𝐴𝐹𝑇) ∧ (𝑃𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))
2915, 2, 5, 16, 6, 27, 28syl132anc 1390 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)))
307, 8, 10hlatlej2 37076 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑄 (𝑃 𝑄))
311, 2, 5, 30syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑄 (𝑃 𝑄))
327, 8, 9, 10, 11, 12cdleme0cp 37914 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴)) → (𝑃 𝑈) = (𝑃 𝑄))
331, 3, 4, 5, 32syl22anc 839 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑃 𝑈) = (𝑃 𝑄))
3431, 33breqtrrd 5067 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → 𝑄 (𝑃 𝑈))
357, 8, 10hlatlej2 37076 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑄) ∈ 𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝐹𝑃) ((𝐹𝑄) (𝐹𝑃)))
361, 19, 21, 35syl3anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝐹𝑃) ((𝐹𝑄) (𝐹𝑃)))
37 simp22 1209 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
3811, 17, 7, 8, 10, 9, 12cdlemg2kq 38302 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝐹𝑇) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑄) 𝑈))
3915, 4, 37, 16, 38syl121anc 1377 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑄) 𝑈))
408, 10hlatjcom 37068 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴 ∧ (𝐹𝑄) ∈ 𝐴) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑄) (𝐹𝑃)))
411, 21, 19, 40syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑃) (𝐹𝑄)) = ((𝐹𝑄) (𝐹𝑃)))
428, 10hlatjcom 37068 . . . . . 6 ((𝐾 ∈ HL ∧ (𝐹𝑄) ∈ 𝐴𝑈𝐴) → ((𝐹𝑄) 𝑈) = (𝑈 (𝐹𝑄)))
431, 19, 14, 42syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑄) 𝑈) = (𝑈 (𝐹𝑄)))
4439, 41, 433eqtr3d 2779 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝐹𝑄) (𝐹𝑃)) = (𝑈 (𝐹𝑄)))
4536, 44breqtrd 5065 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝐹𝑃) (𝑈 (𝐹𝑄)))
4634, 45jca 515 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → (𝑄 (𝑃 𝑈) ∧ (𝐹𝑃) (𝑈 (𝐹𝑄))))
477, 8, 9, 10ps-2c 37228 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) ∧ ((𝐹𝑄) ∈ 𝐴𝑄𝐴 ∧ (𝐹𝑃) ∈ 𝐴) ∧ ((¬ 𝑃 (𝑈 (𝐹𝑄)) ∧ 𝑄 ≠ (𝐹𝑃)) ∧ (𝑃 (𝐹𝑄)) ≠ (𝑄 (𝐹𝑃)) ∧ (𝑄 (𝑃 𝑈) ∧ (𝐹𝑃) (𝑈 (𝐹𝑄))))) → ((𝑃 (𝐹𝑄)) (𝑄 (𝐹𝑃))) ∈ 𝐴)
481, 2, 14, 19, 5, 21, 26, 29, 46, 47syl333anc 1404 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝐹𝑇) ∧ (𝑃𝑄 ∧ (𝐹𝑃) ≠ 𝑄 ∧ ((𝐹𝑄) (𝐹𝑃)) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹𝑄)) (𝑄 (𝐹𝑃))) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932   class class class wbr 5039  cfv 6358  (class class class)co 7191  lecple 16756  joincjn 17772  meetcmee 17773  Atomscatm 36963  HLchlt 37050  LHypclh 37684  LTrncltrn 37801  trLctrl 37858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-riotaBAD 36653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-undef 7993  df-map 8488  df-proset 17756  df-poset 17774  df-plt 17790  df-lub 17806  df-glb 17807  df-join 17808  df-meet 17809  df-p0 17885  df-p1 17886  df-lat 17892  df-clat 17959  df-oposet 36876  df-ol 36878  df-oml 36879  df-covers 36966  df-ats 36967  df-atl 36998  df-cvlat 37022  df-hlat 37051  df-llines 37198  df-lplanes 37199  df-lvols 37200  df-lines 37201  df-psubsp 37203  df-pmap 37204  df-padd 37496  df-lhyp 37688  df-laut 37689  df-ldil 37804  df-ltrn 37805  df-trl 37859
This theorem is referenced by:  cdlemg18d  38381
  Copyright terms: Public domain W3C validator