| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglineineq | Structured version Visualization version GIF version | ||
| Description: Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineintmo.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglineintmo.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| tglineintmo.c | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| tglineineq.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| tglineineq.y | ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) |
| Ref | Expression |
|---|---|
| tglineineq | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineineq.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
| 2 | tglineineq.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) | |
| 3 | tglineintmo.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | tglineintmo.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tglineintmo.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | tglineintmo.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglineintmo.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | tglineintmo.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
| 9 | tglineintmo.c | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tglineintmo 28626 | . 2 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 11 | elin 3913 | . . 3 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
| 12 | 1, 11 | sylib 218 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) |
| 13 | elin 3913 | . . 3 ⊢ (𝑌 ∈ (𝐴 ∩ 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
| 14 | 2, 13 | sylib 218 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
| 15 | eleq1 2819 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 16 | eleq1 2819 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
| 17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵))) |
| 18 | eleq1 2819 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴)) | |
| 19 | eleq1 2819 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑌 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵))) |
| 21 | 17, 20 | moi 3672 | . 2 ⊢ (((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝑌 ∈ (𝐴 ∩ 𝐵)) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵))) → 𝑋 = 𝑌) |
| 22 | 1, 2, 10, 12, 14, 21 | syl212anc 1382 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 ≠ wne 2928 ∩ cin 3896 ran crn 5620 ‘cfv 6487 Basecbs 17126 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-xnn0 12461 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-concat 14484 df-s1 14510 df-s2 14761 df-s3 14762 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-cgrg 28495 |
| This theorem is referenced by: isperp2 28699 footne 28707 lnopp2hpgb 28747 colopp 28753 lmieu 28768 |
| Copyright terms: Public domain | W3C validator |