| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglineineq | Structured version Visualization version GIF version | ||
| Description: Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
| Ref | Expression |
|---|---|
| tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
| tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
| tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
| tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| tglineintmo.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
| tglineintmo.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
| tglineintmo.c | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| tglineineq.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| tglineineq.y | ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) |
| Ref | Expression |
|---|---|
| tglineineq | ⊢ (𝜑 → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineineq.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
| 2 | tglineineq.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) | |
| 3 | tglineintmo.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | tglineintmo.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | tglineintmo.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | tglineintmo.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | tglineintmo.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
| 8 | tglineintmo.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
| 9 | tglineintmo.c | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 10 | 3, 4, 5, 6, 7, 8, 9 | tglineintmo 28613 | . 2 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
| 11 | elin 3916 | . . 3 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
| 12 | 1, 11 | sylib 218 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) |
| 13 | elin 3916 | . . 3 ⊢ (𝑌 ∈ (𝐴 ∩ 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
| 14 | 2, 13 | sylib 218 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
| 15 | eleq1 2817 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
| 16 | eleq1 2817 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
| 17 | 15, 16 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵))) |
| 18 | eleq1 2817 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴)) | |
| 19 | eleq1 2817 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵)) | |
| 20 | 18, 19 | anbi12d 632 | . . 3 ⊢ (𝑥 = 𝑌 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵))) |
| 21 | 17, 20 | moi 3675 | . 2 ⊢ (((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝑌 ∈ (𝐴 ∩ 𝐵)) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵))) → 𝑋 = 𝑌) |
| 22 | 1, 2, 10, 12, 14, 21 | syl212anc 1382 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∃*wmo 2532 ≠ wne 2926 ∩ cin 3899 ran crn 5615 ‘cfv 6477 Basecbs 17112 TarskiGcstrkg 28398 Itvcitv 28404 LineGclng 28405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-er 8617 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-trkgc 28419 df-trkgb 28420 df-trkgcb 28421 df-trkg 28424 df-cgrg 28482 |
| This theorem is referenced by: isperp2 28686 footne 28694 lnopp2hpgb 28734 colopp 28740 lmieu 28755 |
| Copyright terms: Public domain | W3C validator |