Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglineineq | Structured version Visualization version GIF version |
Description: Two distinct lines intersect in at most one point, variation. Theorem 6.21 of [Schwabhauser] p. 46. (Contributed by Thierry Arnoux, 6-Aug-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineintmo.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
tglineintmo.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
tglineintmo.c | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
tglineineq.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
tglineineq.y | ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) |
Ref | Expression |
---|---|
tglineineq | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineineq.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
2 | tglineineq.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝐴 ∩ 𝐵)) | |
3 | tglineintmo.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | tglineintmo.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | tglineintmo.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | tglineintmo.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglineintmo.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | tglineintmo.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
9 | tglineintmo.c | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tglineintmo 27001 | . 2 ⊢ (𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) |
11 | elin 3904 | . . 3 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
12 | 1, 11 | sylib 217 | . 2 ⊢ (𝜑 → (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) |
13 | elin 3904 | . . 3 ⊢ (𝑌 ∈ (𝐴 ∩ 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
14 | 2, 13 | sylib 217 | . 2 ⊢ (𝜑 → (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
15 | eleq1 2826 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) | |
16 | eleq1 2826 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵)) | |
17 | 15, 16 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵))) |
18 | eleq1 2826 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐴 ↔ 𝑌 ∈ 𝐴)) | |
19 | eleq1 2826 | . . . 4 ⊢ (𝑥 = 𝑌 → (𝑥 ∈ 𝐵 ↔ 𝑌 ∈ 𝐵)) | |
20 | 18, 19 | anbi12d 631 | . . 3 ⊢ (𝑥 = 𝑌 → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵))) |
21 | 17, 20 | moi 3654 | . 2 ⊢ (((𝑋 ∈ (𝐴 ∩ 𝐵) ∧ 𝑌 ∈ (𝐴 ∩ 𝐵)) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ∧ ((𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵))) → 𝑋 = 𝑌) |
22 | 1, 2, 10, 12, 14, 21 | syl212anc 1379 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃*wmo 2538 ≠ wne 2943 ∩ cin 3887 ran crn 5592 ‘cfv 6435 Basecbs 16910 TarskiGcstrkg 26786 Itvcitv 26792 LineGclng 26793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-oadd 8299 df-er 8496 df-pm 8616 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-dju 9657 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-n0 12232 df-xnn0 12304 df-z 12318 df-uz 12581 df-fz 13238 df-fzo 13381 df-hash 14043 df-word 14216 df-concat 14272 df-s1 14299 df-s2 14559 df-s3 14560 df-trkgc 26807 df-trkgb 26808 df-trkgcb 26809 df-trkg 26812 df-cgrg 26870 |
This theorem is referenced by: isperp2 27074 footne 27082 lnopp2hpgb 27122 colopp 27128 lmieu 27143 |
Copyright terms: Public domain | W3C validator |