Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg17dALTN Structured version   Visualization version   GIF version

Theorem cdlemg17dALTN 36827
Description: Same as cdlemg17dN 36826 with fewer antecedents but longer proof TODO: fix comment. (Contributed by NM, 9-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg17dALTN (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) = ((𝑃 𝑄) 𝑊))

Proof of Theorem cdlemg17dALTN
StepHypRef Expression
1 simp3l 1215 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) (𝑃 𝑄))
2 simp11 1217 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
3 simp12 1218 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑊𝐻)
4 simp13 1219 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐺𝑇)
5 cdlemg12.l . . . . 5 = (le‘𝐾)
6 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
95, 6, 7, 8trlle 36347 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) 𝑊)
102, 3, 4, 9syl21anc 828 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) 𝑊)
112hllatd 35527 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
12 eqid 2778 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1312, 6, 7, 8trlcl 36327 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇) → (𝑅𝐺) ∈ (Base‘𝐾))
142, 3, 4, 13syl21anc 828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ (Base‘𝐾))
15 simp21l 1346 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑃𝐴)
16 simp22 1221 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑄𝐴)
17 cdlemg12.j . . . . . 6 = (join‘𝐾)
18 cdlemg12.a . . . . . 6 𝐴 = (Atoms‘𝐾)
1912, 17, 18hlatjcl 35530 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
202, 15, 16, 19syl3anc 1439 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2112, 6lhpbase 36161 . . . . 5 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
223, 21syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑊 ∈ (Base‘𝐾))
23 cdlemg12.m . . . . 5 = (meet‘𝐾)
2412, 5, 23latlem12 17475 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐺) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐺) 𝑊) ↔ (𝑅𝐺) ((𝑃 𝑄) 𝑊)))
2511, 14, 20, 22, 24syl13anc 1440 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (((𝑅𝐺) (𝑃 𝑄) ∧ (𝑅𝐺) 𝑊) ↔ (𝑅𝐺) ((𝑃 𝑄) 𝑊)))
261, 10, 25mpbi2and 702 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ((𝑃 𝑄) 𝑊))
27 hlatl 35523 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
282, 27syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝐾 ∈ AtLat)
29 simp21 1220 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
30 simp3r 1216 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝐺𝑃) ≠ 𝑃)
315, 18, 6, 7, 8trlat 36332 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐺𝑇 ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
322, 3, 29, 4, 30, 31syl212anc 1448 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) ∈ 𝐴)
33 simp23 1222 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → 𝑃𝑄)
345, 17, 23, 18, 6lhpat 36206 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
352, 3, 29, 16, 33, 34syl212anc 1448 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
365, 18atcmp 35474 . . 3 ((𝐾 ∈ AtLat ∧ (𝑅𝐺) ∈ 𝐴 ∧ ((𝑃 𝑄) 𝑊) ∈ 𝐴) → ((𝑅𝐺) ((𝑃 𝑄) 𝑊) ↔ (𝑅𝐺) = ((𝑃 𝑄) 𝑊)))
3728, 32, 35, 36syl3anc 1439 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → ((𝑅𝐺) ((𝑃 𝑄) 𝑊) ↔ (𝑅𝐺) = ((𝑃 𝑄) 𝑊)))
3826, 37mpbid 224 1 (((𝐾 ∈ HL ∧ 𝑊𝐻𝐺𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴𝑃𝑄) ∧ ((𝑅𝐺) (𝑃 𝑄) ∧ (𝐺𝑃) ≠ 𝑃)) → (𝑅𝐺) = ((𝑃 𝑄) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969   class class class wbr 4888  cfv 6137  (class class class)co 6924  Basecbs 16266  lecple 16356  joincjn 17341  meetcmee 17342  Latclat 17442  Atomscatm 35426  AtLatcal 35427  HLchlt 35513  LHypclh 36147  LTrncltrn 36264  trLctrl 36321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-map 8144  df-proset 17325  df-poset 17343  df-plt 17355  df-lub 17371  df-glb 17372  df-join 17373  df-meet 17374  df-p0 17436  df-p1 17437  df-lat 17443  df-clat 17505  df-oposet 35339  df-ol 35341  df-oml 35342  df-covers 35429  df-ats 35430  df-atl 35461  df-cvlat 35485  df-hlat 35514  df-lhyp 36151  df-laut 36152  df-ldil 36267  df-ltrn 36268  df-trl 36322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator